In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular s...In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diameter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift progressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.展开更多
The pulse propagations of both the electron temperature and the electron density have been observed during pulse-modulated molecular beam injection experiments on HL-2A. The propagation depth of the cold pulse in the ...The pulse propagations of both the electron temperature and the electron density have been observed during pulse-modulated molecular beam injection experiments on HL-2A. The propagation depth of the cold pulse in the low field side is much longer than that in the high field side. The cold pulses cannot propagate to the plasma center from either the low field side or the high field side. The electron temperature in the plasma center does not change during MBI, but the electron density pulse perturbations can be observed in the plasma center.展开更多
In the HL-2A 2004 experiment campaign, pulsed molecular beam injection (MBI) and strong hydrogen gas puffing under the divertor configuration were used for gas fueling. The experimental results show that the MBI of ...In the HL-2A 2004 experiment campaign, pulsed molecular beam injection (MBI) and strong hydrogen gas puffing under the divertor configuration were used for gas fueling. The experimental results show that the MBI of hydrogen can reduce the heat flux to the divertor target plate. The electron temperature measured by the Langmuir probe array decreases significantly during the injection of the molecular beam whereas the electron density increases. This indicates that the plasma pressure near the target plates tends to be constant at a new equilibrium level. In the divertor plasmas with strong hydrogen gas puffing a high plasma density up to 4.4 × 10^19 m^-3 was achieved. In addition, a phenomenon similar to the partially detached divertor regime was observed, which is being studied in open divertor tokamaks such as DIII-D to reduce the peak heat flux on the target plates near the separatrix. After a strong gas puffing the electron temperature measured on the outer divertor target plate near the separatrix decreases till below 5 eV or even lower, but that of the farther outer divertor target plate does not change obviously; and the CIII and the Ha emissions at the plasma edge decrease as expected, but the Ha emission near the Xpoint increases. These results reflects some interesting characteristics, which needs to be studied by further modeling and experiments.展开更多
The edge plasma fluctuation characteristics are studied by the fast reciprocating scanning 6-probes in the boundary region. These probes can measure edge plasma temperature, density, poloidal electric field, radial el...The edge plasma fluctuation characteristics are studied by the fast reciprocating scanning 6-probes in the boundary region. These probes can measure edge plasma temperature, density, poloidal electric field, radial electric field, Reynolds stress, and their profiles in once discharges. Measurement results are used to analyze plasma confinement, turbulent fluctuations and their correlation characteristics during multi-shot pellet injection (MPI) , supersonic molecular beam injection (SMB1) and electron cyclotron resonant heating ( ECRH ) discharges.展开更多
The experimental set-up of SMBI system in HL-2A and the detail structure of the molecular beam valve with cooling trap are shown in Fig.l. The valve used for producing hydrogen cluster jet is a solenoid valve S99 with...The experimental set-up of SMBI system in HL-2A and the detail structure of the molecular beam valve with cooling trap are shown in Fig.l. The valve used for producing hydrogen cluster jet is a solenoid valve S99 with a nozzle orifice of 0.2 mm diameter. The distance between the nozzle of the valve and the edge plasma is about 1.28 m. A liquid nitrogen cryogenic trap is applied for cooling the valve body and decreasing the working gas temperature. The hydrogen cluster jet used for the experiments is in fact a free jet. For real gases, the adiabatic expansion of gas through a nozzle into vacuum results in substantial cooling in the frame of the moving gas. Atoms or molecules that interact weakly at low temperature can form clusters as a result. Attractive forces between atoms can be hydrogen bonding,展开更多
HL-2A tokamak, the first tokamak with divertor in China, has been constructed and put into operation in 2002. The main parameters are R=1.65 m, a=0.4 m, BT=2.8 T, Ip = 0. 48 MA. The divertor of HL-2A is unique, becaus...HL-2A tokamak, the first tokamak with divertor in China, has been constructed and put into operation in 2002. The main parameters are R=1.65 m, a=0.4 m, BT=2.8 T, Ip = 0. 48 MA. The divertor of HL-2A is unique, because it is characterized with a large closed divertor chamber. The device has double divertor chamber, but now it is operating with lower single null configuration to study the physics of divertor for the next step design of a divertor. Supersonic molecular beam injection (SMBI) system with LN2 cooling trap was first installed and demonstrated on the HL-2A tokamak in 2004. The first results of SMBI into HL-2A plasma are to demonstrate the function of the HL-2A divertor and to observe the cold pulse propagation during multi-pulse SMBI on HL-2A Tokamak.展开更多
Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a coop...Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a cooperation research item co-supported by the National Nature Science Foundation of China and the Max-Planck Institute of Plasma Physics, Garching, Germany. The experiments of the gas jet with hydrogen or deuterium on W7-AS were implemented. The experimental results exhibit the following features such as high fuelling efficiency, stable high-density plasmas and reduction of the recycling fluxes from the vessel wall during injection. These crucial points show that the new fuelling method can be applied to long and stable discharges.展开更多
HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed diwrtor were simulated by the current filament code and t...HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed diwrtor were simulated by the current filament code and they were in agreement with the diagnostic results in the divertor. Supersonic molecular beam injection (SMBI) system was first installed and tested on the HL-2A tokamak in 2004. In the present experiment low pressure SMBI fuelling on the HL-2A closed divertor was carried out. The experimental results indicate that the divertor was operated in the 'linear regime' and during the period of SMB pulse injection into the HL-2A plasma the power density eonvected at the target plate surfaces was 0.4 times of that before or after the beam injection. It is a useful fuelling method for decreasing the heat load on the neutralizer plates of the divertor.展开更多
Edge plasma characteristics were studied by a fast-scanning 4-probe array and a Much/Reynolds stress/Langmuir 10-probe movable array in the boundary region. These probes could measure the edge plasma temperature, dens...Edge plasma characteristics were studied by a fast-scanning 4-probe array and a Much/Reynolds stress/Langmuir 10-probe movable array in the boundary region. These probes could measure the edge plasma temperature, density, poloidal electric field, radial electric field, Reynolds stress, poloidal rotation velocities and their profiles, which could be obtained by changing the radial positions of the probe array shot by shot. The measured results were used to analyse plasma confinement, turbulent fluctuations and correlations. The fixed flush 3-probe arrays were mounted on the 4-divertor neutralization plates at the same toroidal cross-section in the divertor chamber. These probes were used to measure the profiles of the electron temperature, density and float potential in the divertor chamber. Edge plasma behaviours in both limiter configuration and divertor configuration are compared. The decay lengths of the edge temperature and density were measured and is emphasized for plasma behaviours of the supersonic molecular beam injection and lower hybrid current drive. The dependence of the radial gradient of Reynolds stress on the poloidal flow and the radial gradient of the electric field on turbulent loss are discussed.展开更多
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diameter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift progressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.
基金supported by the National Natural Science Foundation of China(No.10335060,10235010)in part by JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘The pulse propagations of both the electron temperature and the electron density have been observed during pulse-modulated molecular beam injection experiments on HL-2A. The propagation depth of the cold pulse in the low field side is much longer than that in the high field side. The cold pulses cannot propagate to the plasma center from either the low field side or the high field side. The electron temperature in the plasma center does not change during MBI, but the electron density pulse perturbations can be observed in the plasma center.
基金supported in part by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion
文摘In the HL-2A 2004 experiment campaign, pulsed molecular beam injection (MBI) and strong hydrogen gas puffing under the divertor configuration were used for gas fueling. The experimental results show that the MBI of hydrogen can reduce the heat flux to the divertor target plate. The electron temperature measured by the Langmuir probe array decreases significantly during the injection of the molecular beam whereas the electron density increases. This indicates that the plasma pressure near the target plates tends to be constant at a new equilibrium level. In the divertor plasmas with strong hydrogen gas puffing a high plasma density up to 4.4 × 10^19 m^-3 was achieved. In addition, a phenomenon similar to the partially detached divertor regime was observed, which is being studied in open divertor tokamaks such as DIII-D to reduce the peak heat flux on the target plates near the separatrix. After a strong gas puffing the electron temperature measured on the outer divertor target plate near the separatrix decreases till below 5 eV or even lower, but that of the farther outer divertor target plate does not change obviously; and the CIII and the Ha emissions at the plasma edge decrease as expected, but the Ha emission near the Xpoint increases. These results reflects some interesting characteristics, which needs to be studied by further modeling and experiments.
文摘The edge plasma fluctuation characteristics are studied by the fast reciprocating scanning 6-probes in the boundary region. These probes can measure edge plasma temperature, density, poloidal electric field, radial electric field, Reynolds stress, and their profiles in once discharges. Measurement results are used to analyze plasma confinement, turbulent fluctuations and their correlation characteristics during multi-shot pellet injection (MPI) , supersonic molecular beam injection (SMB1) and electron cyclotron resonant heating ( ECRH ) discharges.
文摘The experimental set-up of SMBI system in HL-2A and the detail structure of the molecular beam valve with cooling trap are shown in Fig.l. The valve used for producing hydrogen cluster jet is a solenoid valve S99 with a nozzle orifice of 0.2 mm diameter. The distance between the nozzle of the valve and the edge plasma is about 1.28 m. A liquid nitrogen cryogenic trap is applied for cooling the valve body and decreasing the working gas temperature. The hydrogen cluster jet used for the experiments is in fact a free jet. For real gases, the adiabatic expansion of gas through a nozzle into vacuum results in substantial cooling in the frame of the moving gas. Atoms or molecules that interact weakly at low temperature can form clusters as a result. Attractive forces between atoms can be hydrogen bonding,
文摘HL-2A tokamak, the first tokamak with divertor in China, has been constructed and put into operation in 2002. The main parameters are R=1.65 m, a=0.4 m, BT=2.8 T, Ip = 0. 48 MA. The divertor of HL-2A is unique, because it is characterized with a large closed divertor chamber. The device has double divertor chamber, but now it is operating with lower single null configuration to study the physics of divertor for the next step design of a divertor. Supersonic molecular beam injection (SMBI) system with LN2 cooling trap was first installed and demonstrated on the HL-2A tokamak in 2004. The first results of SMBI into HL-2A plasma are to demonstrate the function of the HL-2A divertor and to observe the cold pulse propagation during multi-pulse SMBI on HL-2A Tokamak.
基金The project supported by the National Nature Science Foundation of China (Nos. 19775011 and 10075016) the China Nuclear Industry Science Foundation (No. 94C03033)
文摘Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a cooperation research item co-supported by the National Nature Science Foundation of China and the Max-Planck Institute of Plasma Physics, Garching, Germany. The experiments of the gas jet with hydrogen or deuterium on W7-AS were implemented. The experimental results exhibit the following features such as high fuelling efficiency, stable high-density plasmas and reduction of the recycling fluxes from the vessel wall during injection. These crucial points show that the new fuelling method can be applied to long and stable discharges.
基金Project supported by the National Science Foundation of China (Grant Nos 19775011, 10075016 and 10475024).The authors wish to thank the HL-2A team members for their hard work.
文摘HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed diwrtor were simulated by the current filament code and they were in agreement with the diagnostic results in the divertor. Supersonic molecular beam injection (SMBI) system was first installed and tested on the HL-2A tokamak in 2004. In the present experiment low pressure SMBI fuelling on the HL-2A closed divertor was carried out. The experimental results indicate that the divertor was operated in the 'linear regime' and during the period of SMB pulse injection into the HL-2A plasma the power density eonvected at the target plate surfaces was 0.4 times of that before or after the beam injection. It is a useful fuelling method for decreasing the heat load on the neutralizer plates of the divertor.
基金supported by the National Natural Science Foundation of China(Nos.10375020 and 10235010)
文摘Edge plasma characteristics were studied by a fast-scanning 4-probe array and a Much/Reynolds stress/Langmuir 10-probe movable array in the boundary region. These probes could measure the edge plasma temperature, density, poloidal electric field, radial electric field, Reynolds stress, poloidal rotation velocities and their profiles, which could be obtained by changing the radial positions of the probe array shot by shot. The measured results were used to analyse plasma confinement, turbulent fluctuations and correlations. The fixed flush 3-probe arrays were mounted on the 4-divertor neutralization plates at the same toroidal cross-section in the divertor chamber. These probes were used to measure the profiles of the electron temperature, density and float potential in the divertor chamber. Edge plasma behaviours in both limiter configuration and divertor configuration are compared. The decay lengths of the edge temperature and density were measured and is emphasized for plasma behaviours of the supersonic molecular beam injection and lower hybrid current drive. The dependence of the radial gradient of Reynolds stress on the poloidal flow and the radial gradient of the electric field on turbulent loss are discussed.