Some properties and asymptotically sharp bounds are obtained for singdar values of Ramanujan’s generalized modular equation. from which infinite-product representations of the Hersch-Pfluger ?dimtortion function ? K ...Some properties and asymptotically sharp bounds are obtained for singdar values of Ramanujan’s generalized modular equation. from which infinite-product representations of the Hersch-Pfluger ?dimtortion function ? K (r) and the Agard η-distortion function η K (t) follow. By these results, the explicit quasiconformal Schwan lemma is improved, several properties are obtained for the Schottky upper bound, and a conjecture on the linear distortion function λ (K) is proved to be true.展开更多
Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pyth...Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .展开更多
New better estimates, which are given in terms of elementary functions, for the function r →(2/π)(1 -r2)κ(r)κ′(r) + logr appearing in Hubner's sharp upper bound for the Hersch-Pfluger distortion functio...New better estimates, which are given in terms of elementary functions, for the function r →(2/π)(1 -r2)κ(r)κ′(r) + logr appearing in Hubner's sharp upper bound for the Hersch-Pfluger distortion function are obtained. With these estimates, some known bounds for the Hersch-Pfluger distortion function in quasiconformal theory are improved, thus. improving the explicit quasiconformal Schwarz lemma and some known estimates for the solutions to the Ramanujan modular equations.展开更多
In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized mo...In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.展开更多
文摘Some properties and asymptotically sharp bounds are obtained for singdar values of Ramanujan’s generalized modular equation. from which infinite-product representations of the Hersch-Pfluger ?dimtortion function ? K (r) and the Agard η-distortion function η K (t) follow. By these results, the explicit quasiconformal Schwan lemma is improved, several properties are obtained for the Schottky upper bound, and a conjecture on the linear distortion function λ (K) is proved to be true.
文摘Diophantine equations have always fascinated mathematicians about existence, finitude, and the calculation of possible solutions. Among these equations, one of them will be the object of our research. This is the Pythagoras’- Fermat’s equation defined as follows. (1) when , it is well known that this equation has an infinity of solutions but has none (non-trivial) when . We also know that the last result, named Fermat-Wiles theorem (or FLT) was obtained at great expense and its understanding remains out of reach even for a good fringe of professional mathematicians. The aim of this research is to set up new simple but effective tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. The tools put forward in this research are the properties of the quotients and the Diophantine remainders which we define as follows. Let a non-trivial triplet () solution of Equation (1) such that . and are called the Diophantine quotients and remainders of solution . We compute the remainder and the quotient of b and c by a using the division algorithm. Hence, we have: and et with . We prove the following important results. if and only if and if and only if . Also, we deduce that or for any hypothetical solution . We illustrate these results by effectively computing the Diophantine quotients and remainders in the case of Pythagorean triplets using a Python program. In the end, we apply the previous properties to directly prove a partial result of FLT. .
基金Supported by National 973 Project of China(2006CB708304)National Natural Science Foundation of China(10771195)
文摘New better estimates, which are given in terms of elementary functions, for the function r →(2/π)(1 -r2)κ(r)κ′(r) + logr appearing in Hubner's sharp upper bound for the Hersch-Pfluger distortion function are obtained. With these estimates, some known bounds for the Hersch-Pfluger distortion function in quasiconformal theory are improved, thus. improving the explicit quasiconformal Schwarz lemma and some known estimates for the solutions to the Ramanujan modular equations.
基金Supported by the National Natural Science Foundation of China(11071069, 11171307)the Natural Science Foundation of Hunan Province(09JJ6003)
文摘In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
文摘In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.