离群点检测任务通常缺少可用的标注数据,且离群数据只占整个数据集的很小一部分,相较于其他的数据挖掘任务,离群点检测的难度较大,尚没有单一的算法适合于所有的场景。因此,结合多样性模型集成和主动学习思想,提出了一种基于主动学习的...离群点检测任务通常缺少可用的标注数据,且离群数据只占整个数据集的很小一部分,相较于其他的数据挖掘任务,离群点检测的难度较大,尚没有单一的算法适合于所有的场景。因此,结合多样性模型集成和主动学习思想,提出了一种基于主动学习的离群点集成检测方法OMAL(Outlier Mining based on Active Learning)。在主动学习框架指导下,根据各种基学习器的对比分析,选择了基于统计的、基于相似性的、基于子空间划分的三个无监督模型作为基学习器。将各基学习器评判的处于离群和正常边界的数据整合后呈现给人类专家进行标注,以最大化人类专家反馈的信息量;从标注的数据集和各基学习器投票产生的数据集中抽样,基于GBM(Gradient BoostingMachine)训练一个有监督二元分类模型,并将该模型应用于全数据集,得出最终的挖掘结果。实验表明,提出方法的AUC有了较为明显的提升,且具有良好的运行效率,具备较好的实用价值。展开更多
针对无人机航拍视角下车道线形状复杂、细节特征易丢失、车道线前后景像素占比不均衡等问题,提出一种基于模型集成的高分辨率融合车道线检测算法.首先使用高分辨率融合结构和双线性插值算法改进全卷积神经网络的卷积模块和上采样模块;...针对无人机航拍视角下车道线形状复杂、细节特征易丢失、车道线前后景像素占比不均衡等问题,提出一种基于模型集成的高分辨率融合车道线检测算法.首先使用高分辨率融合结构和双线性插值算法改进全卷积神经网络的卷积模块和上采样模块;然后依据模型集成思想,使用改进后的模型结构作为车道线前后景语义分割模型及车道线多类别语义分割模型,用于分步骤解决车道线检测问题,并使用阈值化交叉熵损失函数和Lovasz损失函数组成联合损失函数对2种模型进行训练;最后使用局部色选区域生长算法为检测结果添补细节.实验结果表明,所提算法在自定义无人机航拍视角的15类车道线语义分割数据集中达到0.5484的平均交并比和0.9931的像素精度,在NVIDIA Tesla V100平台对分辨率为512×512的图像的检测速度达到23.08帧/s.展开更多
文摘离群点检测任务通常缺少可用的标注数据,且离群数据只占整个数据集的很小一部分,相较于其他的数据挖掘任务,离群点检测的难度较大,尚没有单一的算法适合于所有的场景。因此,结合多样性模型集成和主动学习思想,提出了一种基于主动学习的离群点集成检测方法OMAL(Outlier Mining based on Active Learning)。在主动学习框架指导下,根据各种基学习器的对比分析,选择了基于统计的、基于相似性的、基于子空间划分的三个无监督模型作为基学习器。将各基学习器评判的处于离群和正常边界的数据整合后呈现给人类专家进行标注,以最大化人类专家反馈的信息量;从标注的数据集和各基学习器投票产生的数据集中抽样,基于GBM(Gradient BoostingMachine)训练一个有监督二元分类模型,并将该模型应用于全数据集,得出最终的挖掘结果。实验表明,提出方法的AUC有了较为明显的提升,且具有良好的运行效率,具备较好的实用价值。
文摘针对无人机航拍视角下车道线形状复杂、细节特征易丢失、车道线前后景像素占比不均衡等问题,提出一种基于模型集成的高分辨率融合车道线检测算法.首先使用高分辨率融合结构和双线性插值算法改进全卷积神经网络的卷积模块和上采样模块;然后依据模型集成思想,使用改进后的模型结构作为车道线前后景语义分割模型及车道线多类别语义分割模型,用于分步骤解决车道线检测问题,并使用阈值化交叉熵损失函数和Lovasz损失函数组成联合损失函数对2种模型进行训练;最后使用局部色选区域生长算法为检测结果添补细节.实验结果表明,所提算法在自定义无人机航拍视角的15类车道线语义分割数据集中达到0.5484的平均交并比和0.9931的像素精度,在NVIDIA Tesla V100平台对分辨率为512×512的图像的检测速度达到23.08帧/s.