In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgra...In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgrading network performance in cellular networks. As the model is non-convex, non-smooth and discrete and computationally expensive, we use decomposition method to solve the MOP problem. We mainly focus on addressing the scalarized sub-problem after decomposition. For the scalarized sub-problem, we propose an enhanced difference method. First, difference of each component is calculated, which provides the guidance of optimization. Then an OPSO is applied to search the optimal step length. The method is applied to GSM network optimization on an area in Beijing. The effect of the application shows that proposed method has a good performance, and is effective/efficient to solve mobile network optimization problems.展开更多
文摘In this paper, we propose a fine-grained grid-based multi-objective model which aims at optimizing base station antennas' configurations, such as transmit power, antenna tilt and antenna azimuth, in order to upgrading network performance in cellular networks. As the model is non-convex, non-smooth and discrete and computationally expensive, we use decomposition method to solve the MOP problem. We mainly focus on addressing the scalarized sub-problem after decomposition. For the scalarized sub-problem, we propose an enhanced difference method. First, difference of each component is calculated, which provides the guidance of optimization. Then an OPSO is applied to search the optimal step length. The method is applied to GSM network optimization on an area in Beijing. The effect of the application shows that proposed method has a good performance, and is effective/efficient to solve mobile network optimization problems.