混合高斯(Mixture of Gaussian,MOG)背景建模算法和Codebook背景建模算法被广泛应用于监控视频的运动目标检测问题,但混合高斯的球体模型通常假设RGB三个分量是独立的,Codebook的圆柱体模型假设背景像素值在圆柱体内均匀分布且背景亮度...混合高斯(Mixture of Gaussian,MOG)背景建模算法和Codebook背景建模算法被广泛应用于监控视频的运动目标检测问题,但混合高斯的球体模型通常假设RGB三个分量是独立的,Codebook的圆柱体模型假设背景像素值在圆柱体内均匀分布且背景亮度值变化方向指向坐标原点,这些假设使得模型对背景的描述能力下降.本文提出了一种椭球体背景模型,该模型克服了混合高斯球体模型和Codebook圆柱体模型假设的局限性,同时利用主成分分析(Principal components analysis,PCA)方法来刻画椭球体背景模型,提出了一种基于主成分分析的Codebook背景建模算法.实验表明,本文算法不仅能够更准确地描述背景像素值在RGB空间中的分布特征,而且具有良好的鲁棒性.展开更多
文摘混合高斯(Mixture of Gaussian,MOG)背景建模算法和Codebook背景建模算法被广泛应用于监控视频的运动目标检测问题,但混合高斯的球体模型通常假设RGB三个分量是独立的,Codebook的圆柱体模型假设背景像素值在圆柱体内均匀分布且背景亮度值变化方向指向坐标原点,这些假设使得模型对背景的描述能力下降.本文提出了一种椭球体背景模型,该模型克服了混合高斯球体模型和Codebook圆柱体模型假设的局限性,同时利用主成分分析(Principal components analysis,PCA)方法来刻画椭球体背景模型,提出了一种基于主成分分析的Codebook背景建模算法.实验表明,本文算法不仅能够更准确地描述背景像素值在RGB空间中的分布特征,而且具有良好的鲁棒性.