丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是真核细胞信号传递的重要途径之一,在调节控制细胞结构和功能活动中发挥关键作用。在真核生物中MAPK信号通路包括p38、ERK、JNK、ERK5等多个亚家族。随着研究的不断深入,发...丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是真核细胞信号传递的重要途径之一,在调节控制细胞结构和功能活动中发挥关键作用。在真核生物中MAPK信号通路包括p38、ERK、JNK、ERK5等多个亚家族。随着研究的不断深入,发现p38、ERK、JNK信号转导途径的活化与骨关节炎(osteoarthritis,OA)软骨损伤密切相关,诱导软骨细胞产生基质金属蛋白酶,加速关节软骨病理性降解,并参与软骨细胞增殖、凋亡与分化等一系列反应,明确MAPK信号通路在OA中的发生发展机制已成为研究的新热点。展开更多
AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto dete...AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto detect the expression of p42/44MAPK, p-Stat3,c-fos and c-jun proteins in 55 hepatocellularcarcinomas (HCC) and their surrounding livertissues.RESULTS The positive rates and expressionlevels of p42/44MAPK, p-Stat3, c-fos and c-junproteins in HCCs were significantly higher thanthose in pericarcinomatous liver tissues (PCLT).A positive correlation was observed between theexpression of p42/44MAPK and c-fos proteins, andbetween p-Stat3 and c-jun, but there was nosignificant correlation between p42/44MAPK and p-Stat3 in HCCs and their surrounding livertissues.CONCLUSION The abnormalities of Ras/Rat/MAPK and JAKs/ Stat3 cascade reaction maycontribute to malignant transformation ofhepatocytes. Hepatocytes which are positive forp42/ 44MAPK, c-fos or c-jun proteins may bepotential malignant pre-cancerous cells.Activation of MAPK and Stat3 proteins may be anearly event in hepatocellular carcinogenesis.展开更多
Janus kinase-signal transduction and transcription activator (JAK-STAT), mitogen- activated protein kinase (MAPK) and nuclear factor κB (NF-κB) are three important cellular signalling pathways, which play pivotal ro...Janus kinase-signal transduction and transcription activator (JAK-STAT), mitogen- activated protein kinase (MAPK) and nuclear factor κB (NF-κB) are three important cellular signalling pathways, which play pivotal roles in regulation of cellular physiologic as well as pathophysiologic functions. Based on the elucidation of the research progress of three signalling cascades, respectively, the current review focuses on the cross-talk of these signalling transduction, and the up-to-date details are also presented on their regulation in inflammatory response.展开更多
丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,p38 MAPK信号传导通路是MAPK通路的分支之一,它通过转录因子磷酸化而改变基因的表达水平,参与多种胞内信息传递过程,能对广泛的...丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,p38 MAPK信号传导通路是MAPK通路的分支之一,它通过转录因子磷酸化而改变基因的表达水平,参与多种胞内信息传递过程,能对广泛的细胞外刺激发生反应,介导细胞生长、发育、分化及死亡全过程。近年研究发现,p38 MAPK在许多疾病的发病过程中具有重要作用,其抑制剂也在相关疾病的动物模型和临床试验中获得令人可喜的成果。展开更多
The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell ...The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.展开更多
Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On th...Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On the other hand, ROS overproduction is detrimental for proper plant growth and development, indicating that the regulation of an appropriate redox balance is essential for plants. ROS homeostasis in plants involves the mitogen-activated protein kinase (MAPK) pathway consisting of the MAPK kinase kinase MEKK1 and the MAPK MPK4. Phenotypic and molecular analysis revealed that the MAPK kinases MKK1 and MKK2 are part of a cascade, regulating ROS and salicylic acid (SA) accumulation. Gene expression analysis shows that of 32 transcription factors reported to be highly responsive to multiple ROS-inducing conditions, 20 are regulated by the MEKK1, predominantly via the MEKK1-MKK1/2-MPK4 pathway. However, MEKK1 also functions on other as yet unknown pathways and part of the MEKK1-dependent MPK4 responses are regulated independently of MKK1 and MKK2. Overall, this analysis emphasizes the central role of this MAPK cascade in oxidative stress signalling, but also indicates the high level of complexity revealed by this signalling network.展开更多
文摘丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是真核细胞信号传递的重要途径之一,在调节控制细胞结构和功能活动中发挥关键作用。在真核生物中MAPK信号通路包括p38、ERK、JNK、ERK5等多个亚家族。随着研究的不断深入,发现p38、ERK、JNK信号转导途径的活化与骨关节炎(osteoarthritis,OA)软骨损伤密切相关,诱导软骨细胞产生基质金属蛋白酶,加速关节软骨病理性降解,并参与软骨细胞增殖、凋亡与分化等一系列反应,明确MAPK信号通路在OA中的发生发展机制已成为研究的新热点。
文摘AIM To study the effect of phosphorylation ofMAPK and Stat3 and the expression of c-fos andc-jun proteins on hepatocellular carcinogenesisand their clinical significance.METHODS SP immunohistochemistry was usedto detect the expression of p42/44MAPK, p-Stat3,c-fos and c-jun proteins in 55 hepatocellularcarcinomas (HCC) and their surrounding livertissues.RESULTS The positive rates and expressionlevels of p42/44MAPK, p-Stat3, c-fos and c-junproteins in HCCs were significantly higher thanthose in pericarcinomatous liver tissues (PCLT).A positive correlation was observed between theexpression of p42/44MAPK and c-fos proteins, andbetween p-Stat3 and c-jun, but there was nosignificant correlation between p42/44MAPK and p-Stat3 in HCCs and their surrounding livertissues.CONCLUSION The abnormalities of Ras/Rat/MAPK and JAKs/ Stat3 cascade reaction maycontribute to malignant transformation ofhepatocytes. Hepatocytes which are positive forp42/ 44MAPK, c-fos or c-jun proteins may bepotential malignant pre-cancerous cells.Activation of MAPK and Stat3 proteins may be anearly event in hepatocellular carcinogenesis.
文摘Janus kinase-signal transduction and transcription activator (JAK-STAT), mitogen- activated protein kinase (MAPK) and nuclear factor κB (NF-κB) are three important cellular signalling pathways, which play pivotal roles in regulation of cellular physiologic as well as pathophysiologic functions. Based on the elucidation of the research progress of three signalling cascades, respectively, the current review focuses on the cross-talk of these signalling transduction, and the up-to-date details are also presented on their regulation in inflammatory response.
文摘丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,p38 MAPK信号传导通路是MAPK通路的分支之一,它通过转录因子磷酸化而改变基因的表达水平,参与多种胞内信息传递过程,能对广泛的细胞外刺激发生反应,介导细胞生长、发育、分化及死亡全过程。近年研究发现,p38 MAPK在许多疾病的发病过程中具有重要作用,其抑制剂也在相关疾病的动物模型和临床试验中获得令人可喜的成果。
文摘The mitogen-activated protein kinases(MAPK) pathway, often known as the RAS-RAFMEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
文摘Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On the other hand, ROS overproduction is detrimental for proper plant growth and development, indicating that the regulation of an appropriate redox balance is essential for plants. ROS homeostasis in plants involves the mitogen-activated protein kinase (MAPK) pathway consisting of the MAPK kinase kinase MEKK1 and the MAPK MPK4. Phenotypic and molecular analysis revealed that the MAPK kinases MKK1 and MKK2 are part of a cascade, regulating ROS and salicylic acid (SA) accumulation. Gene expression analysis shows that of 32 transcription factors reported to be highly responsive to multiple ROS-inducing conditions, 20 are regulated by the MEKK1, predominantly via the MEKK1-MKK1/2-MPK4 pathway. However, MEKK1 also functions on other as yet unknown pathways and part of the MEKK1-dependent MPK4 responses are regulated independently of MKK1 and MKK2. Overall, this analysis emphasizes the central role of this MAPK cascade in oxidative stress signalling, but also indicates the high level of complexity revealed by this signalling network.