期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于Minkowski泛函和K-means聚类算法的岩石类型划分 被引量:10
1
作者 杨博 刘钰洋 潘懋 《科学技术与工程》 北大核心 2017年第22期63-67,共5页
数字岩心技术的发展和计算科学、物理学、统计学、油藏工程等多学科的交叉融合,为基于数字岩心图像的岩石类型的精细划分提供了一种新的方法。基于micro-CT物理法成像处理后获得的砂岩数字岩心图像,运用闵可夫斯基泛函作为基于数字岩心... 数字岩心技术的发展和计算科学、物理学、统计学、油藏工程等多学科的交叉融合,为基于数字岩心图像的岩石类型的精细划分提供了一种新的方法。基于micro-CT物理法成像处理后获得的砂岩数字岩心图像,运用闵可夫斯基泛函作为基于数字岩心图像的岩石物性特征的综合表征参数;并结合K-means聚类算法,可以达到基于数字岩心图像的岩石类型的精细划分和获得基于精细岩石类型层次系统的目的。对于后续基于精细岩心层次系统岩心物性参数的模拟和粗化具有十分重要的意义。 展开更多
关键词 砂岩数字岩心 岩石类型划分 闵可夫斯基泛函 K-means聚类分析
下载PDF
拟Banach空间与K-凸集上Minkowski泛函 被引量:4
2
作者 徐永春 《河北大学学报(自然科学版)》 CAS 2004年第4期345-349,共5页
拟Banach空间即是完备的赋拟范线性空间,一般的拟Banach空间,不是局部凸的拓扑线性空间.然而,这类非局部凸空间又有其特有的拓扑结构,从而使泛函分析理论中许多基本内容可以建立在这一类空间上.该文讨论了赋拟范线性空间与拟Banach空间... 拟Banach空间即是完备的赋拟范线性空间,一般的拟Banach空间,不是局部凸的拓扑线性空间.然而,这类非局部凸空间又有其特有的拓扑结构,从而使泛函分析理论中许多基本内容可以建立在这一类空间上.该文讨论了赋拟范线性空间与拟Banach空间基本拓扑结构,尤其是拟范数与K_凸集上Minkowski泛函的关系. 展开更多
关键词 赋拟范线性空间 拟范数 K-凸集 minkowski泛函
下载PDF
有关半范的问题 被引量:2
3
作者 董立华 《济南大学学报(自然科学版)》 CAS 2003年第4期361-363,共3页
介绍了半范等概念 ,并证明当p(x)为E的一个半范时 ,得p(x)≡ μB(x) ,其中B =xp(x) <1,x∈E ;另一方面 ,当A为线性空间E的“凸、星型吸收、均衡”集时 ,Minkowski泛函 μA(x)
关键词 半范 minkowski泛函 凸集 星型吸收集 均衡集
下载PDF
Convex Mappings on Some Reinhardt Domains 被引量:1
4
作者 Yi HONG Wen Ge CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2021-2028,共8页
In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), ... In this paper, we consider the following Reinhardt domains. Let M = (M1, M2,..., Mn) : [0,1] → [0,1]^n be a C2-function and Mj(0) = 0, Mj(1) = 1, Mj″ 〉 0, C1jr^pj-1 〈 Mj′(r) 〈 C2jr^pj-1, r∈ (0, 1), pj 〉 2, 1 ≤ j ≤ n, 0 〈 C1j 〈 C2j be constants. Define DM={z=(z1,z2,…,Zn)^T∈C^n:n∑j=1 Mj(|zj|)〈1}Then DM C^n is a convex Reinhardt domain. We give an extension theorem for a normalized biholomorphic convex mapping f : DM -→ C^n. 展开更多
关键词 Reinhardt domain biholomorphic convex mapping minkowski functional Schwarz lemma
原文传递
拟赋范空间若干分析结构及其应用背景 被引量:1
5
作者 苏永福 《天津工业大学学报》 CAS 2004年第6期77-79,共3页
拟赋范空间是一类非局部凸线性拓扑空间,在非局部凸空间中它具有较好性质,许多泛函分析理论可建立在此空间上.文中首先证明了拟范数是一种吸收平衡非凸集的Minkowski泛函,再得到了拟赋范空间中正规锥的若干结论,同时指出了拟赋范空间若... 拟赋范空间是一类非局部凸线性拓扑空间,在非局部凸空间中它具有较好性质,许多泛函分析理论可建立在此空间上.文中首先证明了拟范数是一种吸收平衡非凸集的Minkowski泛函,再得到了拟赋范空间中正规锥的若干结论,同时指出了拟赋范空间若干应用背景. 展开更多
关键词 拟范数 K-凸集 minkowski泛函 正规锥 半序
下载PDF
关于Minkowski泛函一个性质证明的注记 被引量:1
6
作者 沈晨 宋冬梅 《高等数学研究》 2013年第1期13-13,15,共2页
设A是拓扑线性空间中的吸收凸集,对于A的Minkowski泛函μA的一个性质,指出有关文献的证明中存在疏漏,并对其进行修正.
关键词 拓扑线性空间 吸收凸集 minkowski泛函
下载PDF
单调Minkowski泛函与Henig真有效性的标量化 被引量:1
7
作者 张申媛 丘京辉 《数学物理学报(A辑)》 CSCD 北大核心 2014年第3期581-592,共12页
没有凸锥的闭性和点性假设,该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质.由此,在偏序局部凸空间的框架下,通过利用单调连续Minkowski泛函和单调连续半范,该文分别获得了一般集合及锥有界集合的弱有效点的标量化.利用此弱有... 没有凸锥的闭性和点性假设,该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质.由此,在偏序局部凸空间的框架下,通过利用单调连续Minkowski泛函和单调连续半范,该文分别获得了一般集合及锥有界集合的弱有效点的标量化.利用此弱有效性的标量化,该文分别推导出一般集合及锥有界集合的Henig真有效点的标量化.进而,当序锥具备有界基时,该文获得局部凸空间中超有效性的一些标量化结果.最后,该文给出Henig真有效性和超有效性的稠密性结果.这些结果推广并改进了有关的已知结果. 展开更多
关键词 局部凸空间 minkowski泛函 弱有效性 Henig真有效性 标量化 稠密性
下载PDF
Minkowski泛函的若干性质 被引量:1
8
作者 田延芬 《吉林化工学院学报》 CAS 2006年第3期86-88,共3页
在研究Minkowski泛函定义的基础上,证明了它的若干性质,举例说明了这些性质的一些应用.
关键词 凸集 minkowski泛函 吸收集 均衡集 空间
下载PDF
Convex mappings on some circular domains
9
作者 Hong Yi Chen WenGe 《Science China Mathematics》 SCIE 2010年第5期228-237,共10页
In this paper,we consider some circular domains.And we give an extension theorem for some normalized biholomorphic convex mapping on some circular domains.Especially,we discover the normalized biholomorphic convex map... In this paper,we consider some circular domains.And we give an extension theorem for some normalized biholomorphic convex mapping on some circular domains.Especially,we discover the normalized biholomorphic convex mapping on some circular domains have the form f(z) =(f1(z1),...,fn(zn)),where fj:D → C are normalized biholomorphic convex mapping. 展开更多
关键词 CIRCULAR domain biholomorphic CONVEX mapping minkowski functional SCHWARZ LEMMA
原文传递
多值非紧映射的特征值问题γx∈Tx-μSx
10
作者 孔文波 丁协平 《四川师范大学学报(自然科学版)》 CAS CSCD 1990年第2期15-19,共5页
最近 R.Baskaran & P.V.Subzabmanyam(1986年)得到了非线性特征值 T_x=λSx 解的存在性定理.本文在它的基础上进一步研究了集值凝聚映射和集值 P_r 紧映射对的特征值问题 yx∈Tx-μSx 解的存在性,推广了他们的主要定理;且该文所得... 最近 R.Baskaran & P.V.Subzabmanyam(1986年)得到了非线性特征值 T_x=λSx 解的存在性定理.本文在它的基础上进一步研究了集值凝聚映射和集值 P_r 紧映射对的特征值问题 yx∈Tx-μSx 解的存在性,推广了他们的主要定理;且该文所得的结果足建立在θ的有界开邻域上,比 R.Baskaran &P.V.Subrahmanyam 建立在θ的开球上的结果更加广泛,由于本文的特征值问题还可导出一些不动点定理,因此推广了集值 Sadovskii 不动点定理.在这篇文章的最后还讨论了相应的随机特征值问题,推广了某些已知的结果. 展开更多
关键词 Fréchet 空间 minkowski 函数 Pγ-紧映射对 随机算子 随机不动点
下载PDF
资产定价第一基本定理的拓扑描述
11
作者 金治明 柏恩娟 《经济数学》 2004年第4期296-301,共6页
资产定价的第一基本定理是数量金融学中核心的定理之一 ,本文证明了在 L∞ 的弱 * 拓扑 σ(L∞ ,L1)中的凸集分离定理 ,并在此定理的基础上给出了没有无风险免费午餐的拓扑描述 ,证明了市场公平性与没有无风险免费午餐条件的等价性 ,从... 资产定价的第一基本定理是数量金融学中核心的定理之一 ,本文证明了在 L∞ 的弱 * 拓扑 σ(L∞ ,L1)中的凸集分离定理 ,并在此定理的基础上给出了没有无风险免费午餐的拓扑描述 ,证明了市场公平性与没有无风险免费午餐条件的等价性 ,从而重新证明了资产定价的第一基本定理 . 展开更多
关键词 minkowski泛函 半范数 没有无风险免费午餐 等价鞅测度 凸集分离定理
下载PDF
广义共同逼近问题的适定性
12
作者 倪仁兴 《数学物理学报(A辑)》 CSCD 北大核心 2003年第2期161-168,共8页
设 C是实 Banach空间 X中有界闭凸子集且 0是 C的内点 ,G是 X中非空闭的有界相对弱紧子集 .记 K( X)为 X的非空紧凸子集全体并赋 H ausdorff距离 ,KG( X)为集合 {A∈ K( X) ;A∩ G=}的闭包 .称广义共同逼近问题 min C( A,G)是适定的... 设 C是实 Banach空间 X中有界闭凸子集且 0是 C的内点 ,G是 X中非空闭的有界相对弱紧子集 .记 K( X)为 X的非空紧凸子集全体并赋 H ausdorff距离 ,KG( X)为集合 {A∈ K( X) ;A∩ G=}的闭包 .称广义共同逼近问题 min C( A,G)是适定的是指它有唯一解 ( x0 ,z0 ) ,且它的每个极小化序列均强收敛到 ( x0 ,z0 ) .在 C是严格凸和 Kadec的假定下 ,证明了 {A∈K( X) ;min C( A,G)是适定的 }含有 KG( X)中稠 Gδ子集 ,这本质地推广和延拓了包括 De Blasi,Myjak andPapini[1]、Li[2 ]和 De Blasi and Myjak[3]等人在内的近期相应结果 . 展开更多
关键词 广义共同逼近问题 适定性 BANACH空间 minkowski泛函 弱紧集 极小化序列
下载PDF
一类Minkowski泛函的若干性质
13
作者 李雪霜 汪文意 高英 《南昌大学学报(理科版)》 CAS 北大核心 2019年第6期511-514,共4页
研究一类特殊的Minkowski泛函—PA(x)。基于该函数在凸性条件下的基本性质,研究了它在仿凸集下的若干性质。首先回答了文献[1]中的公开问题,并给出了证明。其次,研究了在全空间下PA(x)和凸锥下PA(x)的特殊性质。最后,利用凸函数的次微... 研究一类特殊的Minkowski泛函—PA(x)。基于该函数在凸性条件下的基本性质,研究了它在仿凸集下的若干性质。首先回答了文献[1]中的公开问题,并给出了证明。其次,研究了在全空间下PA(x)和凸锥下PA(x)的特殊性质。最后,利用凸函数的次微分定义给出了PA(x)的次微分的计算结果。 展开更多
关键词 线性空间 minkowski泛函 仿凸集 次微分
下载PDF
孔隙尺度下岩性分类及参数粗化 被引量:1
14
作者 宋文辉 姚军 +4 位作者 CHRISTOPH Arns 李阳 张磊 杨永飞 孙海 《科学通报》 EI CAS CSCD 北大核心 2017年第16期1774-1787,共14页
随着孔隙尺度流动模拟研究深入,基于数字图像可对岩石性质进行模拟计算,但计算结果并不能反映宏观岩样性质,因此急需合理参数粗化方法.本文建立了孔隙尺度下处理岩性分类以及参数粗化的一整套方法.对于岩相学岩性分类,计算闵可夫斯基形... 随着孔隙尺度流动模拟研究深入,基于数字图像可对岩石性质进行模拟计算,但计算结果并不能反映宏观岩样性质,因此急需合理参数粗化方法.本文建立了孔隙尺度下处理岩性分类以及参数粗化的一整套方法.对于岩相学岩性分类,计算闵可夫斯基形态学函数值,采用K均值聚类得到水平层理,并通过空间插值和K均值聚类确定出岩石不规则层理.对于水动力学岩性分类,计算逾渗几何参数,使用有监督无监督高斯混合模型进行分类,分类结果与连通孔隙结构性质匹配良好.基于层状层理、不规则层理、水动力学岩性分类结果提出相应参数粗化公式,计算局部岩样渗透率、电导率反推整体岩样渗透率、电导率.研究结果发现基于水动力学岩性分类结果建立的参数粗化公式获得的整体岩样渗透率、电导率最为准确. 展开更多
关键词 岩性分类 参数粗化 闵可夫斯基函数 逾渗几何 K均值 高斯混合模型
原文传递
有界星形域上的全纯映照成为星形映照的判别准则
15
作者 龚升 王世坤 余其煌 《数学学报(中文版)》 SCIE CSCD 北大核心 1999年第1期13-16,共4页
本文讨论从有界星形圆形域和Carathedory完备域到Cn局部双全纯映照成为双全纯星形映照的充分必要条件.
关键词 星形圆形域 星形映照 判别准则 全纯映照
原文传递
关于β-凸集的分离性
16
作者 朴东哲 李基容 《延边大学学报(自然科学版)》 CAS 1997年第4期77-78,共2页
给出了关于吸收的β-凸集的Minkowski泛函的定义,并且得出了用该泛函来分离局部β-凸空间中β-凸集的结果.
关键词 局部β凸空间 β凸集 分离性 线性拓扑空间
下载PDF
锥拟凸映射
17
作者 袁德辉 龚海林 刘晓玲 《韩山师范学院学报》 2005年第6期1-4,53,共5页
利用Minkowski泛函,文中定义了一类新的锥拟凸函数(广义锥拟凸,广义严格拟凸和 广义强锥拟凸),获得了相应的性质,讨论了这类映射与以往拟凸映射的关系.
关键词 锥拟凸 广义锥拟凸 锥有界拟凸 Minbwski泛函
下载PDF
Connections on Complex Finsler Manifold 被引量:1
18
作者 Rong-mu YanDepartment of Mathematics, Xiamen University, Xiamen 361005, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第3期431-436,共6页
We introduce Finsler metric on complex manifold and discuss connections induced by this metric.
关键词 Complex minkowski functional complex Finsler manifold Cartan scalar Berwald scalar
原文传递
广义Minkowski泛函及其性质 被引量:2
19
作者 施绍萍 刘玉兰 梅家骝 《南昌大学学报(理科版)》 CAS 北大核心 2002年第1期18-21,共4页
借助锥序关系定义了一种广义的Minkowshki泛函 。
关键词 锥序关系 锥界点 广义 Minbkowski泛函 锥拟凸映射 集值优化 凸集 凸锥
下载PDF
土壤表面干缩裂隙形态定量分析及其数值模拟 被引量:15
20
作者 朱磊 陈玖泓 刘德东 《农业工程学报》 EI CAS CSCD 北大核心 2016年第14期8-14,共7页
为揭示农田土壤表面干缩裂隙发展规律以及形成机理,该文对农田土壤裂隙演化试验图像进行二值化、去除噪点、提取裂隙边缘等处理,应用闵科夫斯基函数定量分析裂隙形态变化,并基于胡克定律模拟由于水分蒸发而引起的土壤收缩开裂过程。结... 为揭示农田土壤表面干缩裂隙发展规律以及形成机理,该文对农田土壤裂隙演化试验图像进行二值化、去除噪点、提取裂隙边缘等处理,应用闵科夫斯基函数定量分析裂隙形态变化,并基于胡克定律模拟由于水分蒸发而引起的土壤收缩开裂过程。结果表明:闵科夫斯基函数可以有效地描述裂隙形态;形态学分析结果显示裂隙的闵科夫斯基面积、长度、欧拉数密度函数具有不同的变化规律;应用数值方法模拟由于水分蒸发而引起土壤收缩开裂的二维裂隙,试验图像裂隙面积、长度、欧拉数密度基本分布在100组模拟图像裂隙密度均值与标准差之间,裂隙试验图像与模拟图像面积、长度、欧拉数密度决定系数在0.893-0.928之间,均方根误差在0.002-0.039之间,偏差在0.064-0.144之间,一致性指标大于0.888,表明模拟结果较好。应用数值方法模拟土壤表面裂隙,有助于研究农田土壤裂隙的形成机理以及土壤裂隙随时间变化过程中动态演化规律。 展开更多
关键词 裂隙 形态 土壤 数值模拟 闵可夫斯基函数
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部