We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and e...We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.展开更多
基金This work was supported by a research grant of Shanxi Province for the first author and partially supported by a fund of UGC(HK) for the second author (Grant No. 2160126, 1999/2000).
文摘We call a subgroup H of a finite group G c-supplemented in G if there exists a subgroup K ofG such that G = HK and H ∩K ≤ core(H). In this paper it is proved that a finite group G is p-nilpotentif G is S4-free and every minimal subgroup of P ∩ GN is c-supplemented in NG(P), and when p = 2 P isquaternion-free, where p is the smallest prime number dividing the order of G, P a Sylow p-subgroup of G.As some applications of this result, some known results are generalized.