The phosphorus fractions, the alkaline phosphatase activity (APA) and other water chemical parameters were concomitantly monitored from April 2003 to October 2004 in different ecotype sites of Lake Taihu. During the s...The phosphorus fractions, the alkaline phosphatase activity (APA) and other water chemical parameters were concomitantly monitored from April 2003 to October 2004 in different ecotype sites of Lake Taihu. During the stages of algae growth, the phosphorus fractions and their relationships with APA in different ecotype sites were discussed and the phosphorus mineralization rate was calculated. In the water of Lake Taihu, most of the phosphorus (70.2%) could be attributed to the suspended particulate phosphorus, while the dissolved reactive phosphorus (DRP) seems to contribute less than 7%. About 58% of the total phosphorus, however, can be hydrolyzed as inorganic phosphate to compensate for phosphorus deficiency of algae and bacteria growth. During the different algae growth stages, the APA and its Kinetic parameters were varied significantly between different ecotype sites of Lake Taihu. This trend is also visible by comparing the phosphorus mineralization rate,and the most rapidly phosphorus turnover time is only several minutes. The fast recycle of phosphorus can, to some extent, be explained that the phosphorus source of algal blooms. The phytoplankton seems to compensate for phosphorus deficiency by using the alkaline phosphatase to hydrolyze phosphomonoesters.展开更多
The fractionation of moderately and highly organic phosphorus (P o) in acid soil was studied by two me thods. By the first method, after incubation for 40 d, the mineralization rates of eight constituents of stab...The fractionation of moderately and highly organic phosphorus (P o) in acid soil was studied by two me thods. By the first method, after incubation for 40 d, the mineralization rates of eight constituents of stable P o in the soil were determined. By the second method, five constituents of precipitates of stable P o in the soil were separated, then the five precipitates were put back into the original soils and incubated for 40 d and 60 d. Then, mineralization rates of the five precipitates were determined. The same results were obtained by the two methods. When the pH of the alkali solution containing stable P o was adjusted from 3.00 to 3.10, the mineralization rate of moderately stable P o was rapidly raised. Therefore, the pH 3.00 is the critical point between moderately and highly stable P o.展开更多
文摘The phosphorus fractions, the alkaline phosphatase activity (APA) and other water chemical parameters were concomitantly monitored from April 2003 to October 2004 in different ecotype sites of Lake Taihu. During the stages of algae growth, the phosphorus fractions and their relationships with APA in different ecotype sites were discussed and the phosphorus mineralization rate was calculated. In the water of Lake Taihu, most of the phosphorus (70.2%) could be attributed to the suspended particulate phosphorus, while the dissolved reactive phosphorus (DRP) seems to contribute less than 7%. About 58% of the total phosphorus, however, can be hydrolyzed as inorganic phosphate to compensate for phosphorus deficiency of algae and bacteria growth. During the different algae growth stages, the APA and its Kinetic parameters were varied significantly between different ecotype sites of Lake Taihu. This trend is also visible by comparing the phosphorus mineralization rate,and the most rapidly phosphorus turnover time is only several minutes. The fast recycle of phosphorus can, to some extent, be explained that the phosphorus source of algal blooms. The phytoplankton seems to compensate for phosphorus deficiency by using the alkaline phosphatase to hydrolyze phosphomonoesters.
文摘The fractionation of moderately and highly organic phosphorus (P o) in acid soil was studied by two me thods. By the first method, after incubation for 40 d, the mineralization rates of eight constituents of stable P o in the soil were determined. By the second method, five constituents of precipitates of stable P o in the soil were separated, then the five precipitates were put back into the original soils and incubated for 40 d and 60 d. Then, mineralization rates of the five precipitates were determined. The same results were obtained by the two methods. When the pH of the alkali solution containing stable P o was adjusted from 3.00 to 3.10, the mineralization rate of moderately stable P o was rapidly raised. Therefore, the pH 3.00 is the critical point between moderately and highly stable P o.