由中国"嫦娥一号"(CE-1)微波辐射计对月球虹湾地区观测时刻相对应的太阳入射角与方位角,由极点球面坐标系与月球观测点局部坐标系的转换关系,得到CE-1对月球虹湾区域(Bay of Rainbow,拉丁文Sinus Iridum)观测的当地时间.采用C...由中国"嫦娥一号"(CE-1)微波辐射计对月球虹湾地区观测时刻相对应的太阳入射角与方位角,由极点球面坐标系与月球观测点局部坐标系的转换关系,得到CE-1对月球虹湾区域(Bay of Rainbow,拉丁文Sinus Iridum)观测的当地时间.采用CE-1微波辐射计观测数据,得到月球虹湾地区当地不同时间的辐射亮度温度(Tb)变化分布.由月表三层模型的热辐射传输理论,结合CE-1微波辐射计19与37GHz通道的Tb数据,反演得到月球昼夜不同时段虹湾地区表面月尘层与月壤层的物理温度变化,分析了影响虹湾地区月表面物理温度的主要因素.展开更多
基于Global Positioning System(GPS)掩星数据在平流层具有较高准确性、稳定性的优势,本文尝试用新一代GPS掩星观测——the Constellation Observing System for Meteorology,Ionosphere,and Climate(COSMIC)资料验证不同卫星平台上先...基于Global Positioning System(GPS)掩星数据在平流层具有较高准确性、稳定性的优势,本文尝试用新一代GPS掩星观测——the Constellation Observing System for Meteorology,Ionosphere,and Climate(COSMIC)资料验证不同卫星平台上先进的微波探测仪(AMSU)的平流层观测结果.通过COSMIC大气温度廓线与AMSU辐射传输模式结合,得到模拟亮温,然后与AMSU平流层观测进行匹配比较.分析表明GPS掩星数据能够作为一个相对独立的参量检验NOAA15、16、18卫星平台内部的偏差.通过一年数据的比较验证,初步显示不同卫星平台的AMSU观测亮温在平流层低层都偏低,并且NOAA18平台的亮温偏低程度明显大于NOAA15、16.AMSU亮温偏差在极地冬季较为显著,尤其南极地区NOAA18的偏差幅度达到1.8K.结合24小时内AMSU观测亮温偏差变化及其样本分布特征,可以看到明显的太阳辐射差异可能是导致AMSU观测亮温在极地偏差显著的主要原因.展开更多
The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface win...The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface tempera- ture, sea surface salinity and incidence angle of observation are investigated. Based on the investi- gations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.展开更多
The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing...The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing information. This paper presented a two-step method to extract the seismic microwave radiation anomaly related with earthquake, which could eliminate the stable influence of geography, terrain, coversphere and seasons, as well as the random influence of weather. Furthermore the two-step method was applied to analyze the anomaly of Wenchuan earthquake based on the data of AMSR-E. Microwave radiation anomalies were effectively detected related to the main shock and aftershocks. The extracted microwave radiation variation showed general features of three-stage: the positive radiation anomaly appeared around the epicenter in the first stage, quiet variation in the second stage, and abnormal area gradually moved to the epicenter in the third stage. After the main shock the microwave radiation anomalies distributed along the Longmenshan faults, and the epicenters of aftershocks were coincident with the anomaly area in space.展开更多
文摘由中国"嫦娥一号"(CE-1)微波辐射计对月球虹湾地区观测时刻相对应的太阳入射角与方位角,由极点球面坐标系与月球观测点局部坐标系的转换关系,得到CE-1对月球虹湾区域(Bay of Rainbow,拉丁文Sinus Iridum)观测的当地时间.采用CE-1微波辐射计观测数据,得到月球虹湾地区当地不同时间的辐射亮度温度(Tb)变化分布.由月表三层模型的热辐射传输理论,结合CE-1微波辐射计19与37GHz通道的Tb数据,反演得到月球昼夜不同时段虹湾地区表面月尘层与月壤层的物理温度变化,分析了影响虹湾地区月表面物理温度的主要因素.
文摘基于Global Positioning System(GPS)掩星数据在平流层具有较高准确性、稳定性的优势,本文尝试用新一代GPS掩星观测——the Constellation Observing System for Meteorology,Ionosphere,and Climate(COSMIC)资料验证不同卫星平台上先进的微波探测仪(AMSU)的平流层观测结果.通过COSMIC大气温度廓线与AMSU辐射传输模式结合,得到模拟亮温,然后与AMSU平流层观测进行匹配比较.分析表明GPS掩星数据能够作为一个相对独立的参量检验NOAA15、16、18卫星平台内部的偏差.通过一年数据的比较验证,初步显示不同卫星平台的AMSU观测亮温在平流层低层都偏低,并且NOAA18平台的亮温偏低程度明显大于NOAA15、16.AMSU亮温偏差在极地冬季较为显著,尤其南极地区NOAA18的偏差幅度达到1.8K.结合24小时内AMSU观测亮温偏差变化及其样本分布特征,可以看到明显的太阳辐射差异可能是导致AMSU观测亮温在极地偏差显著的主要原因.
文摘The microwave radiation of the sea surface, which is denoted by the sea surface brightness temperature, is not only related with sea surface salinity (SSS) and temperature (SST), but also influenced by sea surface wind. The errors of wind detected by satellite sensor have significant influences on the accuracy of SSS and SST retrieval. The effects of sea surface wind on sea surface brightness temperature, i.e. △Th,v, and the relations among △Th,v, wind speed, sea surface tempera- ture, sea surface salinity and incidence angle of observation are investigated. Based on the investi- gations, a new algorithm depending on the design of a single radiometer with double polarizations and multi-incidence angles is proposed. The algorithm excludes the influence of sea surface wind on SSS and SST retrieval, and provides a new method for remote sensing of SSS and SST.
基金supported by the National Important Basic Research Project(No.2011CB707102)by the National Natural Science Foundation of China(No.41074127)
文摘The satellite remote sensing has become a promising technique for detecting earthquake and fault activities. But it is still very difficult to exactly extract the earthquake anomaly from the complicated remote sensing information. This paper presented a two-step method to extract the seismic microwave radiation anomaly related with earthquake, which could eliminate the stable influence of geography, terrain, coversphere and seasons, as well as the random influence of weather. Furthermore the two-step method was applied to analyze the anomaly of Wenchuan earthquake based on the data of AMSR-E. Microwave radiation anomalies were effectively detected related to the main shock and aftershocks. The extracted microwave radiation variation showed general features of three-stage: the positive radiation anomaly appeared around the epicenter in the first stage, quiet variation in the second stage, and abnormal area gradually moved to the epicenter in the third stage. After the main shock the microwave radiation anomalies distributed along the Longmenshan faults, and the epicenters of aftershocks were coincident with the anomaly area in space.