Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq...Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.展开更多
Magnetoelastic couplings in giant magnetostrictive materials(GMMs)attract significant interests due to their extensive applications in the fields of spintronics and energy harvesting devices.Understanding the role of ...Magnetoelastic couplings in giant magnetostrictive materials(GMMs)attract significant interests due to their extensive applications in the fields of spintronics and energy harvesting devices.Understanding the role of the selection of materials and the response to external fields is essential for attaining desired functionality of a GMM.Herein,machine learning(ML)models are conducted to predict saturation magnetostrictions(λ_(s))in RFe_(2)-type(R=rare earth)GMMs with different compositions.According to ML-predicted composition–λsrelations,it is discovered that the values ofλshigher than1100×10^(-6)are almost situated in the composition space surrounded by 0.26≤x≤0.60 and 1.90≤y≤2.00 for the ternary compounds of Tb_(x)Dy_(1-x)Fe_(y).Assisted by ML predictions,the compositions are further narrowed down to the space surrounded by 0.26≤x≤0.32 and 1.92≤y≤1.97 for the excellent piezomagnetic(PM)performance in the Tb_(x)Dy_(1-x)Fe_(y)based PM device through our developed high-throughput(HTP)micromagnetic simulation(MMS)algorithm.Accordingly,high sensitivities up to10.22-13.61 m T·MPa^(-1)are observed in the optimized range within which the available experimental data fall well.This work not only provides valuable insights toward understanding the mechanism of magnetoelastic couplings,but also paves the way for designing and optimizing highperformance magnetostrictive materials and PM sensing devices.展开更多
Rare earth giant magnetostrictive materials(GMMs)Tb_(1-x)Dy_(x)Fe_(2±δ)(Tb-Dy-Fe)have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room ...Rare earth giant magnetostrictive materials(GMMs)Tb_(1-x)Dy_(x)Fe_(2±δ)(Tb-Dy-Fe)have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature.However,Tb-Dy-Fe still shows a relatively large coercivity with high hysteresis,which inevitably limits its application range.Herein,micromagnetic simulations are performed to investigate the size effect of precipitated phase(α-Fe)on coercivity in Tb-Dy-Fe.Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size ofα-Fe from 4 to 50 nm in Tb-Dy-Fe since the precipitated phase ofα-Fe can act as a magnetization reversal nucleus.This decreasing trend of coercivity can be well fitted with an inverse square relationship,which agrees well with the nucleation theory.Our study highlights that the coercivity of Tb-Dy-Fe can be tailored by tuning the size ofα-Fe precipitation.展开更多
Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in g...Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.展开更多
Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materia...Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets.展开更多
A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters w...A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).展开更多
Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field,...Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field, we investigate the spinwave modes of skyrmion bags, which behave differently from the clockwise(CW) rotation mode and the counterclockwise(CCW) rotation mode of skyrmions because of their complex spin topological structures. The in-plane excitation power spectral density shows that each skyrmion bag possesses four resonance frequencies. By further studying the spin dynamics of a skyrmion bag at each resonance frequency, the four spin-wave modes, i.e., a CCW-CW mode, two CW-breathing modes with different resonance strengths, and an inner CCW mode, appear as a composition mode of outer skyrmion–inner skyrmions. Our results are helpful in understanding the in-plane spin excitation of skyrmion bags, which may contribute to the characterization and detection of skyrmion bags, as well as the applications in logic devices.展开更多
Magnonics is a fascinating and emerging field, which mainly studies processing information with spin waves.Magnonic devices with in-plane magnetization have recently been realized. Because of the isotropic propagation...Magnonics is a fascinating and emerging field, which mainly studies processing information with spin waves.Magnonic devices with in-plane magnetization have recently been realized. Because of the isotropic propagation, magnonic devices based on perpendicular magnetization are attracting extensive interest. Here, we numerically demonstrate two magnonic filters with out-of-plane magnetization using micromagnetic simulations. The band-pass and the band-stop functions have been realized in two structurally modulated waveguides, respectively. The intensity of spin waves is manipulated when they arrive at the uniformly/non-uniformly magnetized modulators, which results in the variation of transmission coefficients. It is found that the proposed filters can work at multiple frequencies, which can be further adjusted by the external magnetic field. Our designed magnonic devices with Néel-type skyrmion could promote the development of spin wave computing using spin textures.展开更多
As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sinter...As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030)the National Natural Science Foundation of China (Grant No. 11204255)。
文摘Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
基金financially supported by the National Key R&D Program of China(No.2021YFB3501401)the National Natural Science Foundation of China(Nos.52001103,U22A20117)Zhejiang Provincial Natural Science Foundation of China(No.LQ21E010001)。
文摘Magnetoelastic couplings in giant magnetostrictive materials(GMMs)attract significant interests due to their extensive applications in the fields of spintronics and energy harvesting devices.Understanding the role of the selection of materials and the response to external fields is essential for attaining desired functionality of a GMM.Herein,machine learning(ML)models are conducted to predict saturation magnetostrictions(λ_(s))in RFe_(2)-type(R=rare earth)GMMs with different compositions.According to ML-predicted composition–λsrelations,it is discovered that the values ofλshigher than1100×10^(-6)are almost situated in the composition space surrounded by 0.26≤x≤0.60 and 1.90≤y≤2.00 for the ternary compounds of Tb_(x)Dy_(1-x)Fe_(y).Assisted by ML predictions,the compositions are further narrowed down to the space surrounded by 0.26≤x≤0.32 and 1.92≤y≤1.97 for the excellent piezomagnetic(PM)performance in the Tb_(x)Dy_(1-x)Fe_(y)based PM device through our developed high-throughput(HTP)micromagnetic simulation(MMS)algorithm.Accordingly,high sensitivities up to10.22-13.61 m T·MPa^(-1)are observed in the optimized range within which the available experimental data fall well.This work not only provides valuable insights toward understanding the mechanism of magnetoelastic couplings,but also paves the way for designing and optimizing highperformance magnetostrictive materials and PM sensing devices.
基金financially supported by the National Key R&D Program of China(No.2021YFB3501401)the National Natural Science Foundation of China(No.52001103)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LQ21E010001)the Ten Thousand Talents Plan of Zhejiang Province of China(No.2019R52014)。
文摘Rare earth giant magnetostrictive materials(GMMs)Tb_(1-x)Dy_(x)Fe_(2±δ)(Tb-Dy-Fe)have been successfully employed in many microelectromechanical devices due to their excellent magnetostrictive properties at room temperature.However,Tb-Dy-Fe still shows a relatively large coercivity with high hysteresis,which inevitably limits its application range.Herein,micromagnetic simulations are performed to investigate the size effect of precipitated phase(α-Fe)on coercivity in Tb-Dy-Fe.Simulation results demonstrate that the coercivity is reduced from 31.46 to 12.48 mT with increasing the size ofα-Fe from 4 to 50 nm in Tb-Dy-Fe since the precipitated phase ofα-Fe can act as a magnetization reversal nucleus.This decreasing trend of coercivity can be well fitted with an inverse square relationship,which agrees well with the nucleation theory.Our study highlights that the coercivity of Tb-Dy-Fe can be tailored by tuning the size ofα-Fe precipitation.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2021B0101300003)the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2022A1515110863 and 2023A1515010837)+5 种基金the National Key Research and Development Program of China(Grant No.2016YFA0300803)the National Natural Science Foundation of China(Grant Nos.12304136,61427812,11774160,12241403,51771127,52171188,and 52111530143)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20200307)the Fundamental Research Funds for the Central Universities,China(Grant No.021014380113)International Exchanges 2020 Cost Share(NSFC),China(Grant No.IECNSFC201296)the Project for Maiden Voyage of Guangzhou Basic and Applied Basic Research Scheme,China(Grant No.2024A04J4186)。
文摘Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB3500300)the National Natural Science Foundation of China(Grant Nos.51931007and 51871005)+4 种基金the Program of Top Disciplines Construction in Beijing(Grant No.PXM2019014204500031)the International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2021B23)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China(Grant No.KZ202010005009)General Program of Science and Technology Development Project of Beijing Municipal Education Commission(Grant No.KM202010005009)Chaoyang District Postdoctoral Research Foundation。
文摘Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets.
文摘A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12104124 and 12274111)the Natural Science Foundation of Hebei Province, China (Grant Nos. A2021201001 and A2021201008)+4 种基金the Central Guidance Fund on the Local Science and Technology Development of Hebei Province, China (Grant No. 236Z0601G)the Post-graduate’s Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2023007)the Advanced Talents Incubation Program of the Hebei University, China (Grant Nos. 521000981395, 521000981423, 521000981394, and 521000981390)the Research Foundation of Chongqing University of Science and technology, China (Grant No. ckrc2019017)the High-Performance Computing Center of Hebei University, China。
文摘Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field, we investigate the spinwave modes of skyrmion bags, which behave differently from the clockwise(CW) rotation mode and the counterclockwise(CCW) rotation mode of skyrmions because of their complex spin topological structures. The in-plane excitation power spectral density shows that each skyrmion bag possesses four resonance frequencies. By further studying the spin dynamics of a skyrmion bag at each resonance frequency, the four spin-wave modes, i.e., a CCW-CW mode, two CW-breathing modes with different resonance strengths, and an inner CCW mode, appear as a composition mode of outer skyrmion–inner skyrmions. Our results are helpful in understanding the in-plane spin excitation of skyrmion bags, which may contribute to the characterization and detection of skyrmion bags, as well as the applications in logic devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074189 and 11704191)。
文摘Magnonics is a fascinating and emerging field, which mainly studies processing information with spin waves.Magnonic devices with in-plane magnetization have recently been realized. Because of the isotropic propagation, magnonic devices based on perpendicular magnetization are attracting extensive interest. Here, we numerically demonstrate two magnonic filters with out-of-plane magnetization using micromagnetic simulations. The band-pass and the band-stop functions have been realized in two structurally modulated waveguides, respectively. The intensity of spin waves is manipulated when they arrive at the uniformly/non-uniformly magnetized modulators, which results in the variation of transmission coefficients. It is found that the proposed filters can work at multiple frequencies, which can be further adjusted by the external magnetic field. Our designed magnonic devices with Néel-type skyrmion could promote the development of spin wave computing using spin textures.
基金Project supported by the National Natural Science Foundation of China(Grant No.52261037)self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(Grant No.E055B002)+2 种基金the Project of Baotou City Science and Technology(Grant No.XM2022BT04)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)the Key Research Project of Jiangxi Province(Grant No.20203ABC28W006)。
文摘As the channel for grain boundary diffusion(GBD)in Nd–Fe–B magnets,grain boundary(GB)phases have a very important effect on GBD.As doping elements that are commonly used to regulate the GB phases in Nd–Fe–B sintered magnets,the influences of Ga and Zr on GBD were investigated in this work.The results show that the Zr-doped magnet has the highest coercivity increment(7.97 kOe)by GBD,which is almost twice that of the Ga-doped magnet(4.32 kOe)and the magnet without Ga and Zr(3.24 kOe).Microstructure analysis shows that ZrB_(2)formed in the Zr-doped magnet plays a key role in increasing the diffusion depth.A continuous diffusion channel in the magnet can form because of the presence of ZrB_(2).ZrB_(2)can also increase the defect concentration in GB phases,which can facilitate GBD.Although Ga can also improve the diffusion depth,its effect is not very obvious.The micromagnetic simulation based on the experimental results also proves that the distribution of Tb in the Zr-doped magnet after GBD is beneficial to coercivity.This study reveals that the doping elements Ga and Zr in Nd–Fe–B play an important role in GBD,and could provide a new perspective for researchers to improve the effects of GBD.