Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut mi...Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbehost interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include(1) the mode of delivery(vaginal or caesarean);(2) diet during infancy(breast milk or formula feeds) and adulthood(vegan based or meat based); and(3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.展开更多
Ulcerative colitis(UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors...Ulcerative colitis(UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. however, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation(FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in thepathogenesis and treatment of UC.展开更多
Acute pancreatitis(AP)is a common gastrointestinal disorder.Approximately15%-20%of patients develop severe AP.Systemic inflammatory response syndrome and multiple organ dysfunction syndrome may be caused by the massiv...Acute pancreatitis(AP)is a common gastrointestinal disorder.Approximately15%-20%of patients develop severe AP.Systemic inflammatory response syndrome and multiple organ dysfunction syndrome may be caused by the massive release of inflammatory cytokines in the early stage of severe AP,followed by intestinal dysfunction and pancreatic necrosis in the later stage.A study showed that 59%of AP patients had associated intestinal barrier injury,with increased intestinal mucosal permeability,leading to intestinal bacterial translocation,pancreatic tissue necrosis and infection,and the occurrence of multiple organ dysfunction syndrome.However,the real effect of the gut microbiota and its metabolites on intestinal barrier function in AP remains unclear.This review summarizes the alterations in the intestinal flora and its metabolites during AP development and progression to unveil the mechanism of gut failure in AP.展开更多
Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host in...Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host interactions associated with various disorders, including Clostridium difficile infection, inflammatory bowel disease, diabetes mellitus, cancer, liver cirrhosis, gut- brain disease and others. To discuss the experiences of using microbes to treat human diseases from ancient China to current era should be important in moving standardized FMT forward and achieving a better future. Here, we review the changing concept of microbiota transplantation from FMT to selective microbiota transplantation, methodology development of FMT and step- up FMT strategy based on literature and state experts' perspectives.展开更多
AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice we...AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation-or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-alpha, IL-1, IL-2, IL-6 and IFN-gamma in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.展开更多
The concept of fecal microbiota transplantation(FMT)has been used in traditional Chinese medicine at least since the 4thcentury.Evidence from recent human studies strongly supports the link between intestinal bacteria...The concept of fecal microbiota transplantation(FMT)has been used in traditional Chinese medicine at least since the 4thcentury.Evidence from recent human studies strongly supports the link between intestinal bacteria and inflammatory bowel disease.We proposed that standardized FMT might be a promising rescue therapy for refractory inflammatory bowel disease.However,there were no reports of FMT used in patients with severe Crohn’s disease(CD).Here,we report the successful treatment of standardized FMT as a rescue therapy for a case of refractory CD complicated with fistula,residual Barium sulfate and formation of intraperitoneal large inflammatory mass.As far as we know,this is the first case of severe CD treated using FMT through mid-gut.展开更多
The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome ca...The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes(e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.展开更多
Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease(NAFLD).The change in gut microbiota may alter nutritional absorption...Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease(NAFLD).The change in gut microbiota may alter nutritional absorption and storage.In addition,gut microbiota are a source of Toll-like receptor(TLR)ligands,and their compositional change can also increase the amount of TLR ligands delivered to the liver.TLR ligands can stimulate liver cells to produce proinflammatory cytokines.Therefore,the gut-liver axis has attracted much interest,particularly regarding the pathogenesis of NAFLD.The abundance of the major gut microbiota,including Firmicutes and Bacteroidetes,has been considered a potential underlying mechanism of obesity and NAFLD,but the role of these microbiota in NAFLD remains unknown.Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD.For instance,a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability,which allows the leakage of bacterial components.Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD.In children,the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis(NASH)compared with those in obese control.Escherichia can produce ethanol,which promotes gut permeability.Thus,normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD.In addition,TLR signaling in the liver is activated,and its downstream molecules,such as proinflammatory cytokines,are increased in NAFLD.To data,TLR2,TLR4,TLR5,and TLR9 have been shown to be associated with the pathogenesis of NAFLD.Therefore,gut microbiota and TLRs are targets for NAFLD treatment.展开更多
Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literat...Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.展开更多
Metabolic syndrome characterized by obesity, hyperglycemia and liver steatosis is becoming prevalent all over the world. Herein, a water insoluble polysaccharide(WIP) was isolated and identified from the sclerotium of...Metabolic syndrome characterized by obesity, hyperglycemia and liver steatosis is becoming prevalent all over the world. Herein, a water insoluble polysaccharide(WIP) was isolated and identified from the sclerotium of Poria cocos, a widely used Traditional Chinese Medicine. WIP was confirmed to be a(1-3)-β-D-glucan with an average Mw of 4.486 × 10~6 Da by NMR and SEC-RI-MALLS analyses. Furthermore, oral treatment with WIP from P. cocos significantly improved glucose and lipid metabolism and alleviated hepatic steatosis in ob/ob mice. 16 S DNA sequencing analysis of cecum content from WIP-treated mice indicated the increase of butyrate-producing bacteria Lachnospiracea, Clostridium. It was also observed that WIP treatment elevated the level of butyrate in gut, improved the gut mucosal integrity and activated the intestinal PPAR-γ pathway. Fecal transplantation experiments definitely confirmed the causative role of gut microbiota in mediating the benefits of WIP. It is the first report that the water insoluble polysaccharide from the sclerotium of P. cocos modulates gut microbiota to improve hyperglycemia and hyperlipidemia. Thereby, WIP from P. cocos, as a prebiotic, has the potential for the prevention or cure of metabolic diseases and may elucidate new mechanism for the efficacies of this traditional herbal medicine on the regulation of lipid and glucose metabolism.展开更多
In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal eco...In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome(IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial(Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful(Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.展开更多
Intestinal dysbiosis is now known to be a complication in a myriad of diseases.Fecal microbiota transplantation(FMT),as a microbiota-target therapy,is arguably very effective for curing Clostridium difficile infection...Intestinal dysbiosis is now known to be a complication in a myriad of diseases.Fecal microbiota transplantation(FMT),as a microbiota-target therapy,is arguably very effective for curing Clostridium difficile infection and has good outcomes in other intestinal diseases.New insights have raised an interest in FMT for the management of extra-intestinal disorders associated with gut microbiota.This review shows that it is an exciting time in the burgeoning science of FMT application in previously unexpected areas,including metabolic diseases,neuropsychiatric disorders,autoimmune diseases,allergic disorders,and tumors.A randomized controlled trial was conducted on FMT in metabolic syndrome by infusing microbiota from lean donors or from self-collected feces,with the resultant findings showing that the lean donor feces group displayed increased insulin sensitivity,along with increased levels of butyrate-producing intestinal microbiota.Case reports of FMT have also shown favorable outcomes in Parkinson's disease,multiple sclerosis,myoclonus dystonia,chronic fatigue syndrome,and idiopathic thrombocytopenic purpura.FMT is a promising approach in the manipulation of the intestinal microbiota and has potential applications in a variety of extra-intestinal conditions associated with intestinal dysbiosis.展开更多
BACKGROUND: Gut microbiota plays a significant role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to assess the contribution of gut microbiota dysbiosis to the pathogenesis of NAFL...BACKGROUND: Gut microbiota plays a significant role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to assess the contribution of gut microbiota dysbiosis to the pathogenesis of NAFLD. METHODS: Forty-seven human feces samples (25 NAFLD patients and 22 healthy subjects) were collected and 16S rDNA amplicon sequencing was conducted on Hiseq 2000 platform. Discrepancy of species composition between controls and NAFLD group was defined by Metastats analysis under P value <0.01. RESULTS: NAFLD patients harbored lower gut microbiota diversity than healthy subjects did. In comparison to the control group, the Proteobacteria (13.50%) and Fusobacteria (2.76%) phyla were more abundant in NAFLD patients. Additionally, the Lachnospiraceae (21.90%), Enterobacteriaceae (12.02%), Erysipelotrichaceae (3.83%), and Streptococcaceae (1.39%) families, as well as the Escherichia_Shigella (10.84%), Lachnospiraceae_Incertae_Sedis (7.79%), and Blautia (4.95%) genera were enriched in the NAFLD group. However, there was a lower abundance of Prevotella in the NAFLD group than that in the control group (5.83% vs 27.56%, P<0.01). The phylum Bacteroidetes (44.63%) also tended to be more abundant in healthy subjects, and the families Prevotellaceae (28.66%) and Ruminococcaceae (26.44%) followed the same trend. Compared to those without non-alcoholic steatohepatitis (NASH), patients with NASH had higher abundance of genus Blautia (5.82% vs 2.25%; P=0.01) and the corresponding Lachnospiraceae family (24.33% vs 14.21%; P<0.01). Patients with significant fibrosis had a higher abundance of genus Escherichia_Shigella (12.53% vs 1.97%; P<0.01) and the corresponding Enterobacteriaceae family (13.92% vs 2.07%; P<0.01) compared to those with F0/F1 fibrosis. CONCLUSIONS: NAFLD patients and healthy subjects harbor varying gut microbiota. In contrast to the results of previous research on children, decreased levels of Prevotella might be detrimental for adults with NAFLD. The increased level of the genus Blautia, the fami展开更多
Fecal microbiota transplantation(FMT)by manual preparation has been applied to treat diseases for thousands of years.However,this method still endures safety risks and challenges the psychological endurance and accept...Fecal microbiota transplantation(FMT)by manual preparation has been applied to treat diseases for thousands of years.However,this method still endures safety risks and challenges the psychological endurance and acceptance of doctors,patients and donors.Population evidence showed the washed microbiota preparation with microfiltration based on an automatic purification system followed by repeated centrifugation plus suspension for three times significantly reduced FMT-related adverse events.This washing preparation makes delivering a precise dose of the enriched microbiota feasible,instead of using the weight of stool.Intraperitoneal injection in mice with the fecal microbiota supernatant obtained after repeated centrifugation plus suspension for three times induced less toxic reaction than that by the first centrifugation following the microfiltration.The toxic reactions that include death,the change in the level of peripheral white blood cells,and the proliferation of germinal center in secondary lymphoid follicles in spleen were noted.The metagenomic next-generation sequencing(NGS)indicated the increasing types and amount of viruses could be washed out during the washing process.Metabolomics analysis indicated metabolites with pro-inflammatory effects in the fecal microbiota supernatant such as leukotriene B4,corticosterone,and prostaglandin G2 could be removed by repeated washing.Near-infrared absorption spectroscopy could be served as a rapid detection method to control the quality of the washingprocess.In conclusion,this study for the first time provides evidence linking clinical findings and animal experiments to support that washed microbiota transplantation(WMT)is safer,more precise and more quality-controllable than the crude FMT by manual.展开更多
Alzheimer's disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including ...Alzheimer's disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut rnicrobiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the "hygiene hypothesis". All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.展开更多
The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and ...The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a “low bacterial richness” may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier (“leaky gut”), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy.展开更多
Poultry is widely produced and consumed meat globally.Its demand is expected to continue increasing to meet the animal protein requirement for ever-increasing human population.Thus,the challenge that poultry scientist...Poultry is widely produced and consumed meat globally.Its demand is expected to continue increasing to meet the animal protein requirement for ever-increasing human population.Thus,the challenge that poultry scientists and industry face are to produce sufficient amount of poultry meat in the most efficient way.In the past,using antibiotics to promote the growth of poultry and manage gut microbiota was a norm.However,due to concerns over potential fatalistic impacts on food animals and indirectly to humans,their use as feed additives are banned or regulated in several jurisdictions.In this changed context,several alternative strategies have been proposed with some success that mimics the functions of antibiotics as growth promoters and modulate gut microbiota for their beneficial roles.These include the use of probiotics,prebiotics,organic acids,and exogenous enzyme,among others.Gut microbiota and their metabolic products improve nutrient digestion,absorption,metabolism,and overall health and growth performance of poultry.This paper reviews the available information on the effect of feed additives used to modulate intestinal microbiota of poultry and their effects on overall health and growth performance.Understanding these functions and interactions will help to develop new dietary and managerial strategies that will ultimately lead to enhanced feed utilization and improved growth performance of poultry.This review will help future researchers and industry to identify alternative feed ingredients having properties like prebiotics,probiotics,organic acids,and exogenous enzymes.展开更多
文摘Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbehost interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include(1) the mode of delivery(vaginal or caesarean);(2) diet during infancy(breast milk or formula feeds) and adulthood(vegan based or meat based); and(3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.
基金Supported by the National Natural Science Foundation of China,No.81670504 and No.81472287the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University,No.20150308
文摘Ulcerative colitis(UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. however, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation(FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in thepathogenesis and treatment of UC.
基金Supported by the National Natural Science Foundation of China,No.81760120 and No.81960128the Key Program of Science and Technology Department of Jiangxi Province,No.20171BBG70084 and No.20192ACBL20037.
文摘Acute pancreatitis(AP)is a common gastrointestinal disorder.Approximately15%-20%of patients develop severe AP.Systemic inflammatory response syndrome and multiple organ dysfunction syndrome may be caused by the massive release of inflammatory cytokines in the early stage of severe AP,followed by intestinal dysfunction and pancreatic necrosis in the later stage.A study showed that 59%of AP patients had associated intestinal barrier injury,with increased intestinal mucosal permeability,leading to intestinal bacterial translocation,pancreatic tissue necrosis and infection,and the occurrence of multiple organ dysfunction syndrome.However,the real effect of the gut microbiota and its metabolites on intestinal barrier function in AP remains unclear.This review summarizes the alterations in the intestinal flora and its metabolites during AP development and progression to unveil the mechanism of gut failure in AP.
基金This work was supported by publicaUy donated Intestine Initiative Jiangsu Province Medicine Creation Team and Leading Talents project (Faming Zhang) National Natural Science Foundation of China (Grant Nos. 81670495 and 81600417) and National Center for Clinical Research of Digestive System Diseases (2015BAI13B07).
文摘Fecal microbiota transplantation (FMT) has become a research focus of biomedicine and clinical medicine in recent years. The clinical response from FMT for different diseases provided evidence for microbiota-host interactions associated with various disorders, including Clostridium difficile infection, inflammatory bowel disease, diabetes mellitus, cancer, liver cirrhosis, gut- brain disease and others. To discuss the experiences of using microbes to treat human diseases from ancient China to current era should be important in moving standardized FMT forward and achieving a better future. Here, we review the changing concept of microbiota transplantation from FMT to selective microbiota transplantation, methodology development of FMT and step- up FMT strategy based on literature and state experts' perspectives.
基金the State Key Development Program for Basic Research of China,No.2012CB517501National Natural Science Foundation of China,No.81070322,No.81270491,No.81470840 and No.31400001100 Talents Program,No.XBR2011007h
文摘AIM To investigate whether gut microbiota metabolite sodium butyrate (NaB) is an effective substance for attenuating non-alcoholic fatty liver disease (NAFLD) and the internal mechanisms. METHODS Male C57BL/6J mice were divided into three groups, normal control were fed standard chow and model group were fed a high-fat diet (HFD) for 16 wk, the intervention group were fed HFD for 16 wk and treated with NaB for 8 wk. Gut microbiota from each group were detected at baseline and at 16 wk, liver histology were evaluated and gastrointestinal barrier indicator such as zonula occluden-1 (ZO-1) were detected by immunohistochemistry and realtime-PCR, further serum or liver endotoxin were determined by ELISA and inflammation-or metabolism-associated genes were quantified by real-time PCR. RESULTS NaB corrected the HFD-induced gut microbiota imbalance in mice, while it considerably elevated the abundances of the beneficial bacteria Christensenellaceae, Blautia and Lactobacillus. These bacteria can produce butyric acid in what seems like a virtuous circle. And butyrate restored HFD induced intestinal mucosa damage, increased the expression of ZO-1 in small intestine, further decreased the levels of gut endotoxin in serum and liver compared with HF group. Endotoxin-associated genes such as TLR4 and Myd88, pro-inflammation genes such as MCP-1, TNF-alpha, IL-1, IL-2, IL-6 and IFN-gamma in liver or epididymal fat were obviously downregulated after NaB intervention. Liver inflammation and fat accumulation were ameliorated, the levels of TG and cholesterol in liver were decreased after NaB intervention, NAS score was significantly decreased, metabolic indices such as FBG and HOMA-IR and liver function indicators ALT and AST were improved compared with HF group. CONCLUSION NaB may restore the dysbiosis of gut microbiota to attenuate steatohepatitis, which is suggested to be a potential gut microbiota modulator and therapeutic substance for NAFLD.
基金Supported by(in part)The Public Donated Grant "Intestine Initiative"
文摘The concept of fecal microbiota transplantation(FMT)has been used in traditional Chinese medicine at least since the 4thcentury.Evidence from recent human studies strongly supports the link between intestinal bacteria and inflammatory bowel disease.We proposed that standardized FMT might be a promising rescue therapy for refractory inflammatory bowel disease.However,there were no reports of FMT used in patients with severe Crohn’s disease(CD).Here,we report the successful treatment of standardized FMT as a rescue therapy for a case of refractory CD complicated with fistula,residual Barium sulfate and formation of intraperitoneal large inflammatory mass.As far as we know,this is the first case of severe CD treated using FMT through mid-gut.
基金Supported by Inserm and Universitéd’Auvergne(UMR 1071)INRA(USC-2018)+1 种基金grants from“Conseil regional d’Auvergne”“Nuovo Soldati Foundation for Cancer Research”and“Fondation pour la recherche médicale”
文摘The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes(e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.
基金Supported by JSPS[Grant-in-Aid for Scientific Research(C)](to Miura K)
文摘Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease(NAFLD).The change in gut microbiota may alter nutritional absorption and storage.In addition,gut microbiota are a source of Toll-like receptor(TLR)ligands,and their compositional change can also increase the amount of TLR ligands delivered to the liver.TLR ligands can stimulate liver cells to produce proinflammatory cytokines.Therefore,the gut-liver axis has attracted much interest,particularly regarding the pathogenesis of NAFLD.The abundance of the major gut microbiota,including Firmicutes and Bacteroidetes,has been considered a potential underlying mechanism of obesity and NAFLD,but the role of these microbiota in NAFLD remains unknown.Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD.For instance,a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability,which allows the leakage of bacterial components.Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD.In children,the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis(NASH)compared with those in obese control.Escherichia can produce ethanol,which promotes gut permeability.Thus,normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD.In addition,TLR signaling in the liver is activated,and its downstream molecules,such as proinflammatory cytokines,are increased in NAFLD.To data,TLR2,TLR4,TLR5,and TLR9 have been shown to be associated with the pathogenesis of NAFLD.Therefore,gut microbiota and TLRs are targets for NAFLD treatment.
基金This study was supported by grants from Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. XMLX201401), the National Natural Science Foundation of China (No. 81301138), National High-Tech R&D Program of China (863 Program, No. 2015AA020514), National Hundred, Thousand, and Ten Thousand Talents Project of Beijing (No. 2010-005).
文摘Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain&#39;s physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain&#39;s neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.
基金supported by the National Key R&D program of China(No.2018YFD0400203)the Strategic Biological Resources Service Network programme of CAS and Key Research Program of the Chinese Academy of Sciences(No.KFZD-SW-219)the Youth Innovation Promotion Association of CAS(No.2014074)
文摘Metabolic syndrome characterized by obesity, hyperglycemia and liver steatosis is becoming prevalent all over the world. Herein, a water insoluble polysaccharide(WIP) was isolated and identified from the sclerotium of Poria cocos, a widely used Traditional Chinese Medicine. WIP was confirmed to be a(1-3)-β-D-glucan with an average Mw of 4.486 × 10~6 Da by NMR and SEC-RI-MALLS analyses. Furthermore, oral treatment with WIP from P. cocos significantly improved glucose and lipid metabolism and alleviated hepatic steatosis in ob/ob mice. 16 S DNA sequencing analysis of cecum content from WIP-treated mice indicated the increase of butyrate-producing bacteria Lachnospiracea, Clostridium. It was also observed that WIP treatment elevated the level of butyrate in gut, improved the gut mucosal integrity and activated the intestinal PPAR-γ pathway. Fecal transplantation experiments definitely confirmed the causative role of gut microbiota in mediating the benefits of WIP. It is the first report that the water insoluble polysaccharide from the sclerotium of P. cocos modulates gut microbiota to improve hyperglycemia and hyperlipidemia. Thereby, WIP from P. cocos, as a prebiotic, has the potential for the prevention or cure of metabolic diseases and may elucidate new mechanism for the efficacies of this traditional herbal medicine on the regulation of lipid and glucose metabolism.
文摘In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome(IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial(Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful(Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.
基金Supported by Grants(No.81470796 to Yan F,No.81070283 to Wang BM and No.81300272 to Cao HL)from the National Natural Science Foundation of Chinaa grant(No.20121202110018 to Wang BM)from the Research Fund for the Doctoral Program of Higher Education of Chinaa grant(No.13JCQNJC10600 to Cao HL)from Tianjin Research Program of Application Foundation and Advanced Technology of China
文摘Intestinal dysbiosis is now known to be a complication in a myriad of diseases.Fecal microbiota transplantation(FMT),as a microbiota-target therapy,is arguably very effective for curing Clostridium difficile infection and has good outcomes in other intestinal diseases.New insights have raised an interest in FMT for the management of extra-intestinal disorders associated with gut microbiota.This review shows that it is an exciting time in the burgeoning science of FMT application in previously unexpected areas,including metabolic diseases,neuropsychiatric disorders,autoimmune diseases,allergic disorders,and tumors.A randomized controlled trial was conducted on FMT in metabolic syndrome by infusing microbiota from lean donors or from self-collected feces,with the resultant findings showing that the lean donor feces group displayed increased insulin sensitivity,along with increased levels of butyrate-producing intestinal microbiota.Case reports of FMT have also shown favorable outcomes in Parkinson's disease,multiple sclerosis,myoclonus dystonia,chronic fatigue syndrome,and idiopathic thrombocytopenic purpura.FMT is a promising approach in the manipulation of the intestinal microbiota and has potential applications in a variety of extra-intestinal conditions associated with intestinal dysbiosis.
基金supported by grants from the National Key Basic Research Project(2012CB517501)the Chinese Foundation for Hepatitis Prevention and Control--“Wang Bao-En” Liver Fibrosis Research Foundation(XJS20120501)the National Natural Science Foundation of China(81400610)
文摘BACKGROUND: Gut microbiota plays a significant role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to assess the contribution of gut microbiota dysbiosis to the pathogenesis of NAFLD. METHODS: Forty-seven human feces samples (25 NAFLD patients and 22 healthy subjects) were collected and 16S rDNA amplicon sequencing was conducted on Hiseq 2000 platform. Discrepancy of species composition between controls and NAFLD group was defined by Metastats analysis under P value <0.01. RESULTS: NAFLD patients harbored lower gut microbiota diversity than healthy subjects did. In comparison to the control group, the Proteobacteria (13.50%) and Fusobacteria (2.76%) phyla were more abundant in NAFLD patients. Additionally, the Lachnospiraceae (21.90%), Enterobacteriaceae (12.02%), Erysipelotrichaceae (3.83%), and Streptococcaceae (1.39%) families, as well as the Escherichia_Shigella (10.84%), Lachnospiraceae_Incertae_Sedis (7.79%), and Blautia (4.95%) genera were enriched in the NAFLD group. However, there was a lower abundance of Prevotella in the NAFLD group than that in the control group (5.83% vs 27.56%, P<0.01). The phylum Bacteroidetes (44.63%) also tended to be more abundant in healthy subjects, and the families Prevotellaceae (28.66%) and Ruminococcaceae (26.44%) followed the same trend. Compared to those without non-alcoholic steatohepatitis (NASH), patients with NASH had higher abundance of genus Blautia (5.82% vs 2.25%; P=0.01) and the corresponding Lachnospiraceae family (24.33% vs 14.21%; P<0.01). Patients with significant fibrosis had a higher abundance of genus Escherichia_Shigella (12.53% vs 1.97%; P<0.01) and the corresponding Enterobacteriaceae family (13.92% vs 2.07%; P<0.01) compared to those with F0/F1 fibrosis. CONCLUSIONS: NAFLD patients and healthy subjects harbor varying gut microbiota. In contrast to the results of previous research on children, decreased levels of Prevotella might be detrimental for adults with NAFLD. The increased level of the genus Blautia, the fami
基金This work was supported by publicly donated Intestine Initiative FoundationPrimary Research&Development Plan of Jiangsu Province(BE2018751)+1 种基金Jiangsu Provincial Medical Innovation Team(Zhang F),National Natural Science Foundation of China(81600417,81670495 and 81873548)China National Center for Clinical Research of Digestive Diseases(201502026).
文摘Fecal microbiota transplantation(FMT)by manual preparation has been applied to treat diseases for thousands of years.However,this method still endures safety risks and challenges the psychological endurance and acceptance of doctors,patients and donors.Population evidence showed the washed microbiota preparation with microfiltration based on an automatic purification system followed by repeated centrifugation plus suspension for three times significantly reduced FMT-related adverse events.This washing preparation makes delivering a precise dose of the enriched microbiota feasible,instead of using the weight of stool.Intraperitoneal injection in mice with the fecal microbiota supernatant obtained after repeated centrifugation plus suspension for three times induced less toxic reaction than that by the first centrifugation following the microfiltration.The toxic reactions that include death,the change in the level of peripheral white blood cells,and the proliferation of germinal center in secondary lymphoid follicles in spleen were noted.The metagenomic next-generation sequencing(NGS)indicated the increasing types and amount of viruses could be washed out during the washing process.Metabolomics analysis indicated metabolites with pro-inflammatory effects in the fecal microbiota supernatant such as leukotriene B4,corticosterone,and prostaglandin G2 could be removed by repeated washing.Near-infrared absorption spectroscopy could be served as a rapid detection method to control the quality of the washingprocess.In conclusion,this study for the first time provides evidence linking clinical findings and animal experiments to support that washed microbiota transplantation(WMT)is safer,more precise and more quality-controllable than the crude FMT by manual.
文摘Alzheimer's disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut rnicrobiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the "hygiene hypothesis". All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.
基金Supported by(in part)FARB-ex 60%2012 of the University of Salerno grant to Vajro P
文摘The incidence of obesity and its related conditions, including non-alcoholic fatty liver disease (NAFLD), has dramatically increased in all age groups worldwide. Given the health consequences of these conditions, and the subsequent economic burden on healthcare systems, their prevention and treatment have become major priorities. Because standard dietary and lifestyle changes and pathogenically-oriented therapies (e.g., antioxidants, oral hypoglycemic agents, and lipid-lowering agents) often fail due to poor compliance and/or lack of efficacy, novel approaches directed toward other pathomechanisms are needed. Here we present several lines of evidence indicating that, by increasing energy extraction in some dysbiosis conditions or small intestinal bacterial overgrowth, specific gut microbiota and/or a “low bacterial richness” may play a role in obesity, metabolic syndrome, and fatty liver. Under conditions involving a damaged intestinal barrier (“leaky gut”), the gut-liver axis may enhance the natural interactions between intestinal bacteria/bacterial products and hepatic receptors (e.g., toll-like receptors), thus promoting the following cascade of events: oxidative stress, insulin-resistance, hepatic inflammation, and fibrosis. We also discuss the possible modulation of gut microbiota by probiotics, as attempted in NAFLD animal model studies and in several pilot pediatric and adult human studies. Globally, this approach appears to be a promising and innovative add-on therapeutic tool for NAFLD in the context of multi-target therapy.
基金Graduate student Sudhir Yadav was supported by USDA National Institute for Food and Agriculture,Hatch/Smith Lever Project HAW02030-H,managed by the College of Tropical Agriculture and Human Resources,University of Hawaii at Manoa,Honolulu,HI USA
文摘Poultry is widely produced and consumed meat globally.Its demand is expected to continue increasing to meet the animal protein requirement for ever-increasing human population.Thus,the challenge that poultry scientists and industry face are to produce sufficient amount of poultry meat in the most efficient way.In the past,using antibiotics to promote the growth of poultry and manage gut microbiota was a norm.However,due to concerns over potential fatalistic impacts on food animals and indirectly to humans,their use as feed additives are banned or regulated in several jurisdictions.In this changed context,several alternative strategies have been proposed with some success that mimics the functions of antibiotics as growth promoters and modulate gut microbiota for their beneficial roles.These include the use of probiotics,prebiotics,organic acids,and exogenous enzyme,among others.Gut microbiota and their metabolic products improve nutrient digestion,absorption,metabolism,and overall health and growth performance of poultry.This paper reviews the available information on the effect of feed additives used to modulate intestinal microbiota of poultry and their effects on overall health and growth performance.Understanding these functions and interactions will help to develop new dietary and managerial strategies that will ultimately lead to enhanced feed utilization and improved growth performance of poultry.This review will help future researchers and industry to identify alternative feed ingredients having properties like prebiotics,probiotics,organic acids,and exogenous enzymes.