Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a compos...Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.展开更多
Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with differ...Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.展开更多
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (No.20050247004)
文摘Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.
基金supported by the National Science Funds for Creative Research Groups of China under Grant No.61421002National High Technology Research and Development Program under Grant No.2015AA8123014
文摘Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.