REMg8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were ...REMg8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)MgzNi, (La, Ce)2MgxT, (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4, MgH2 and REHx (x=2.5 1 or 3) phases in hydriding. CEH2.51 phase transformed into CEH2.29 phase in dehydriding, whereas LaH3, PrH3 and NdH3 phases re- mained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption tempera- ture of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the Cell2.51 and the CEH2.29.展开更多
By laser multi-layer cladding using a pulsed Nd-YAG irradiation the thickness of the cladding zone Mg-based alloys(ZM2 and ZM5) can reach about 1.0 mm.The microstructure of the substrate and the cladding zone was stud...By laser multi-layer cladding using a pulsed Nd-YAG irradiation the thickness of the cladding zone Mg-based alloys(ZM2 and ZM5) can reach about 1.0 mm.The microstructure of the substrate and the cladding zone was studied using optical microscope, scanning electron microscopy(SEM), X-ray diffractometry(XRD) and micro hardness analysis. It is observed that constituent of ZM5 alloy is δ+Mg 17Al 12, that of ZM2 alloy is α+MgZn+Mg 9Ce. That of cladding layer ZM2 alloy(L-ZM2) is Mg+Mg 2Zn 11+MgCe; while that of the cladding layer ZM5 alloy(L-ZM5) is Mg+Mg 32(Al, Zn) 49. The hardness of the cladding area can be increased to values above HV127. Very fine uniform microstructure and the produced new phases of nanometer/sub-micrometer order were obtained. Now, many repaired Mg-based alloy components have been passed by flying test in outside field.展开更多
The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption...The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container.展开更多
The eifects of Ni content and ball milling time on the hydrogen storage thermodynamics and kinetics performances of asmilled La5Mg95-xNix(x=5,10,15)ternary alloys have been investigated.The evolution of microstructure...The eifects of Ni content and ball milling time on the hydrogen storage thermodynamics and kinetics performances of asmilled La5Mg95-xNix(x=5,10,15)ternary alloys have been investigated.The evolution of microstructure and phase of experimental alloys in the absorption/desorption process has been characterized by XRD,SEM and HRTEM.The hydrogen storage kinetics and thermodynamics performances and PCI curves have been tested using the Sievert apparatus.It is found that the rising of Ni content remarkably improves the hydrogen storage kinetic performance,but reduces hydrogen storage capacity.And with the increase in milling time,hydrogen desorption activation(Ea)value decreases firstly and then increases;the minimum value is 47.6 kJ/mol,and the corresponding milling time is 10 h for La5Mg85Ni10 alloy.As for the thermodynamics properties,the hydrogenation enthalpy(△H)and hydrogenation entropy(△S)both decrease firstly and then increase with the rising of Ni content and milling time.The composite La5Mg85Ni10 alloy milled for 10 h exhibits the best thermodynamics and kinetics performances,the lowest Ea of 47.6 kJ/mol,absorption of 5.4 wt.%within 5 min and desorption of 5.2 wt.%within 3 min at 360℃and the lowest△H and△S of 72.1 kJ/mol and 123.2 J/mol/K.展开更多
As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic...As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed) were modeled with the Redlich-Kister equation. The compound energy model has been used to describe the thermodynamic functions of the intermetallic compounds in the La-Mg-Y systems. The compounds Mg2Y, Mg24Y5, Mg12La, Mg17La2, Mg41Las, Mg3La and Mg2La in the La-Mg-Y system were treated as the formulae (Mg,Y)2(La,Mg,Y), Mg24(La,Mg,Y)4Y, Mg12(La, Y), Mg17(La,Y)2, Mg41(La,Y)5, Mg3(La,Mg,Y) and Mg2(La, Y), respectively. A model (La, Mg,Y)0.5(La,Mg,Y)0.5 was applied to describe the compound MgM formed by MgLa and MgY in order to cope with the order-disorder transition between body-centered cubic solution (A2) and MgM with CsCl-type structure (B2) in the La-Mg-Y system. The Gibbs energies of individual phases were optimized in the La-Mg, La-Y and La-Mg-Y systems by CALPHAD technique. The projection of the liquidus surfaces for the La-Mg-Y system was predicted. The Mg-based alloys database including 36 binary and 15 ternary systems formed by Mg, Al, Cu, Ni, Mn, Zn and rare earth elements was set up in SGTE standard.展开更多
A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al ...A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al rich alloys and to the effects of rare earth additions on their properties. A summary of the experimental work carried out by our research group on several binary and ternary alloys is reported: that is Mg RE, Al RE, and Mg RE RE′ and Al RE RE′ with two different rare earth metals. A number of regularities observed in the formation and in the crystallochemistry of binary and ternary Mg rich or Al rich phases are summarised and discussed. Their application to a fine planning of alloys having a well defined structure is suggested.展开更多
采用单辊快速凝固法制备出Mg80 x Alx Cu15Y5(x=0,1)合金薄带,再将薄带在不同温度下进行退火处理,利用XRD、DSC和HRTEM分析Al元素对Mg80 x Alx Cu15Y5(x=0,1)合金薄带的非晶形成能力及热稳定性的影响。结果表明:Al的加入使得Mg-Cu-Y合...采用单辊快速凝固法制备出Mg80 x Alx Cu15Y5(x=0,1)合金薄带,再将薄带在不同温度下进行退火处理,利用XRD、DSC和HRTEM分析Al元素对Mg80 x Alx Cu15Y5(x=0,1)合金薄带的非晶形成能力及热稳定性的影响。结果表明:Al的加入使得Mg-Cu-Y合金的玻璃转变温度和初始结晶温度升高,过冷液相区宽度ΔTx因Al部分置换Mg而增大,约化玻璃转变温度Trg从0.616升至0.631,合金的非晶形成能力及热稳定性提高。随着退火温度的升高,Mg79Al1Cu15Y5合金的晶化率低于Mg80Cu15Y5合金的。当退火温度为523 K时Mg80 x Alx Cu15Y5(x=0,1)合金均发生明显晶化,在非晶基体上弥散析出大量HCP-Mg和Mg2Cu纳米颗粒;当温度升高至573 K时,Mg79Al1Cu15Y5合金中有针状AlMg化合物相形成。展开更多
基金Foundation item: Project supported by National High-Tech Research and Development Program of China (2007AA05Z 117), National Natural Science Foundation of China (50971112, 51171165), China Postdoctoral Science Foundation (20100470990) and Natural Science Founda- tion of Hebei Province (E2010001170)
文摘REMg8.35Ni2.18Al0.21 (RE=La, Ce, Pr, and Nd) alloys were prepared by induction melting and following annealing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the alloys were composed of Mg2Ni, (La, Pr, Nd)MgzNi, (La, Ce)2MgxT, (Ce, Pr, Nd)Mg12 and Ce2Ni7 phases. The above phases were disproportioned into Mg2NiH4, MgH2 and REHx (x=2.5 1 or 3) phases in hydriding. CEH2.51 phase transformed into CEH2.29 phase in dehydriding, whereas LaH3, PrH3 and NdH3 phases re- mained unchanged. The PrMg8.41Ni2.14Al0.20 alloy had the fastest hydriding kinetics and the highest dehydriding plateau pressure while the CeMg8.35Ni2.18Al0.21 alloy presented the best hydriding/dehydriding reversibility. The onset hydrogen desorption tempera- ture of the CeMg8.35Ni2.18Al0.21 hydride decreased remarkably owing to the phase transformation between the Cell2.51 and the CEH2.29.
文摘By laser multi-layer cladding using a pulsed Nd-YAG irradiation the thickness of the cladding zone Mg-based alloys(ZM2 and ZM5) can reach about 1.0 mm.The microstructure of the substrate and the cladding zone was studied using optical microscope, scanning electron microscopy(SEM), X-ray diffractometry(XRD) and micro hardness analysis. It is observed that constituent of ZM5 alloy is δ+Mg 17Al 12, that of ZM2 alloy is α+MgZn+Mg 9Ce. That of cladding layer ZM2 alloy(L-ZM2) is Mg+Mg 2Zn 11+MgCe; while that of the cladding layer ZM5 alloy(L-ZM5) is Mg+Mg 32(Al, Zn) 49. The hardness of the cladding area can be increased to values above HV127. Very fine uniform microstructure and the produced new phases of nanometer/sub-micrometer order were obtained. Now, many repaired Mg-based alloy components have been passed by flying test in outside field.
文摘The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container.
基金financially supported by the National Natural Science Foundations of China (51761032, 51471054 and 51871125)
文摘The eifects of Ni content and ball milling time on the hydrogen storage thermodynamics and kinetics performances of asmilled La5Mg95-xNix(x=5,10,15)ternary alloys have been investigated.The evolution of microstructure and phase of experimental alloys in the absorption/desorption process has been characterized by XRD,SEM and HRTEM.The hydrogen storage kinetics and thermodynamics performances and PCI curves have been tested using the Sievert apparatus.It is found that the rising of Ni content remarkably improves the hydrogen storage kinetic performance,but reduces hydrogen storage capacity.And with the increase in milling time,hydrogen desorption activation(Ea)value decreases firstly and then increases;the minimum value is 47.6 kJ/mol,and the corresponding milling time is 10 h for La5Mg85Ni10 alloy.As for the thermodynamics properties,the hydrogenation enthalpy(△H)and hydrogenation entropy(△S)both decrease firstly and then increase with the rising of Ni content and milling time.The composite La5Mg85Ni10 alloy milled for 10 h exhibits the best thermodynamics and kinetics performances,the lowest Ea of 47.6 kJ/mol,absorption of 5.4 wt.%within 5 min and desorption of 5.2 wt.%within 3 min at 360℃and the lowest△H and△S of 72.1 kJ/mol and 123.2 J/mol/K.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 50471095 and 50271008).
文摘As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed) were modeled with the Redlich-Kister equation. The compound energy model has been used to describe the thermodynamic functions of the intermetallic compounds in the La-Mg-Y systems. The compounds Mg2Y, Mg24Y5, Mg12La, Mg17La2, Mg41Las, Mg3La and Mg2La in the La-Mg-Y system were treated as the formulae (Mg,Y)2(La,Mg,Y), Mg24(La,Mg,Y)4Y, Mg12(La, Y), Mg17(La,Y)2, Mg41(La,Y)5, Mg3(La,Mg,Y) and Mg2(La, Y), respectively. A model (La, Mg,Y)0.5(La,Mg,Y)0.5 was applied to describe the compound MgM formed by MgLa and MgY in order to cope with the order-disorder transition between body-centered cubic solution (A2) and MgM with CsCl-type structure (B2) in the La-Mg-Y system. The Gibbs energies of individual phases were optimized in the La-Mg, La-Y and La-Mg-Y systems by CALPHAD technique. The projection of the liquidus surfaces for the La-Mg-Y system was predicted. The Mg-based alloys database including 36 binary and 15 ternary systems formed by Mg, Al, Cu, Ni, Mn, Zn and rare earth elements was set up in SGTE standard.
文摘A review of crystallochemical thermodynamic and phase diagram data of Mg RE and Al RE based systems is presented. On the basis also of their possible applications, special attention is given to the Mg rich and Al rich alloys and to the effects of rare earth additions on their properties. A summary of the experimental work carried out by our research group on several binary and ternary alloys is reported: that is Mg RE, Al RE, and Mg RE RE′ and Al RE RE′ with two different rare earth metals. A number of regularities observed in the formation and in the crystallochemistry of binary and ternary Mg rich or Al rich phases are summarised and discussed. Their application to a fine planning of alloys having a well defined structure is suggested.
文摘采用单辊快速凝固法制备出Mg80 x Alx Cu15Y5(x=0,1)合金薄带,再将薄带在不同温度下进行退火处理,利用XRD、DSC和HRTEM分析Al元素对Mg80 x Alx Cu15Y5(x=0,1)合金薄带的非晶形成能力及热稳定性的影响。结果表明:Al的加入使得Mg-Cu-Y合金的玻璃转变温度和初始结晶温度升高,过冷液相区宽度ΔTx因Al部分置换Mg而增大,约化玻璃转变温度Trg从0.616升至0.631,合金的非晶形成能力及热稳定性提高。随着退火温度的升高,Mg79Al1Cu15Y5合金的晶化率低于Mg80Cu15Y5合金的。当退火温度为523 K时Mg80 x Alx Cu15Y5(x=0,1)合金均发生明显晶化,在非晶基体上弥散析出大量HCP-Mg和Mg2Cu纳米颗粒;当温度升高至573 K时,Mg79Al1Cu15Y5合金中有针状AlMg化合物相形成。