Lunar soil preserves numerous fragments of meteorites impacting on the Moon,providing a unique opportunity to investigate the distribution of the types of projectiles over billions of years.Here we report the first di...Lunar soil preserves numerous fragments of meteorites impacting on the Moon,providing a unique opportunity to investigate the distribution of the types of projectiles over billions of years.Here we report the first discovery of an iron meteorite fragment from the Chang’e-5 lunar soil,which consists mainly of martensite(quenched from taenite),kamacite,and schreibersite,with a trace of pentlandite.The meteorite fragment is Ni-and P-rich,S-poor,and based on its mineral chemistry and bulk composition,can be classified into the IID-group,a rare and carbonaceous group of iron meteorite originating in the outer Solar System.This meteorite fragment experienced only limited partial melting followed by fast cooling,suggestive of efficient preservation of intact remnants of iron meteorites impacting on the porous lunar regolith.Alternatively,it is a relic of a low-velocity impact of submillimeter-sized metal grains originated from an IID-like iron meteorite.Our observations demonstrate that it is feasible to achieve the type distribution of meteorites impacting on the Moon via systematically analyzing a large number of metal grains separated from lunar soils,thus shedding light on the dynamic evolution of the Solar System.展开更多
This study covers cosmic spherules derived from the Mesoproterozoic Dahongyu Formation in the Ming Tombs area, Beijing. The cosmic spherules include iron oxide cosmic spherules, carbonaceous chondrites, and atomic iro...This study covers cosmic spherules derived from the Mesoproterozoic Dahongyu Formation in the Ming Tombs area, Beijing. The cosmic spherules include iron oxide cosmic spherules, carbonaceous chondrites, and atomic iron "steely bead"-shaped cosmic spherules. The mineral assemblage of silicon carbide, forsterite, zircon, and glass spherules and fragments were picked from melt-silicified carbonate of the Mesoproterozoic Dahongyu Formation(ca. 1625 Ma). Cosmic spherule assemblages are solely discovered from sedimentary rocks in China. Platinum group elements(PGE) were determined for the first time in cosmic spherules and associated minerals. PGE comparative observation between meteorite and cosmic spherules is presented in this study. It is recognized that an extraterrestrial meteorite impact event might have occurred in the Dahongyu Stage. The main evidence is a large number of iron cosmic spherules in silicified oncolitic limestone, and associated cosmic silicon carbide, glass spherules, and fragments, as well as the presence of forsterite. The impact-volcanic crater is characteristic of a big black shale block dropped into the bended silicified limestone.展开更多
基金supported by the National Natural Science Foundation of China(42230206,42241152,and 42103035)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDJ-SSW-DQC001).
文摘Lunar soil preserves numerous fragments of meteorites impacting on the Moon,providing a unique opportunity to investigate the distribution of the types of projectiles over billions of years.Here we report the first discovery of an iron meteorite fragment from the Chang’e-5 lunar soil,which consists mainly of martensite(quenched from taenite),kamacite,and schreibersite,with a trace of pentlandite.The meteorite fragment is Ni-and P-rich,S-poor,and based on its mineral chemistry and bulk composition,can be classified into the IID-group,a rare and carbonaceous group of iron meteorite originating in the outer Solar System.This meteorite fragment experienced only limited partial melting followed by fast cooling,suggestive of efficient preservation of intact remnants of iron meteorites impacting on the porous lunar regolith.Alternatively,it is a relic of a low-velocity impact of submillimeter-sized metal grains originated from an IID-like iron meteorite.Our observations demonstrate that it is feasible to achieve the type distribution of meteorites impacting on the Moon via systematically analyzing a large number of metal grains separated from lunar soils,thus shedding light on the dynamic evolution of the Solar System.
基金granted by National Nature Science Foundation of China(41472082,41402100,49772121,40172044,and 41173065)Institute of Geology,Chinese Academy of Geological Sciences,ChinaGeological Survey(DD20190448 and DD20190370).
文摘This study covers cosmic spherules derived from the Mesoproterozoic Dahongyu Formation in the Ming Tombs area, Beijing. The cosmic spherules include iron oxide cosmic spherules, carbonaceous chondrites, and atomic iron "steely bead"-shaped cosmic spherules. The mineral assemblage of silicon carbide, forsterite, zircon, and glass spherules and fragments were picked from melt-silicified carbonate of the Mesoproterozoic Dahongyu Formation(ca. 1625 Ma). Cosmic spherule assemblages are solely discovered from sedimentary rocks in China. Platinum group elements(PGE) were determined for the first time in cosmic spherules and associated minerals. PGE comparative observation between meteorite and cosmic spherules is presented in this study. It is recognized that an extraterrestrial meteorite impact event might have occurred in the Dahongyu Stage. The main evidence is a large number of iron cosmic spherules in silicified oncolitic limestone, and associated cosmic silicon carbide, glass spherules, and fragments, as well as the presence of forsterite. The impact-volcanic crater is characteristic of a big black shale block dropped into the bended silicified limestone.