Metamaterials are artificial structures that are usually described by effective medium parameters on the macroscopic scale,and these metamaterials are referred to as‘analog metamaterials’.Here,we propose‘digital me...Metamaterials are artificial structures that are usually described by effective medium parameters on the macroscopic scale,and these metamaterials are referred to as‘analog metamaterials’.Here,we propose‘digital metamaterials’through two steps.First,we present‘coding metamaterials’that are composed of only two types of unit cells,with 0 and p phase responses,which we name‘0’and‘1’elements,respectively.By coding‘0’and‘1’elements with controlled sequences(i.e.,1-bit coding),we can manipulate electromagnetic(EM)waves and realize different functionalities.The concept of coding metamaterials can be extended from 1-bit coding to 2-bit coding or higher.In 2-bit coding,four types of unit cells,with phase responses of 0,p/2,p,and 3p/2,are required to mimic the‘00’,‘01’,‘10’and‘11’elements,respectively.The 2-bit coding has greater freedom than 1-bit coding for controlling EM waves.Second,we propose a unique metamaterial particle that has either a‘0’or‘1’response controlled by a biased diode.Based on this particle,we present‘digital metamaterials’with unit cells that possess either a‘0’or‘1’state.Using a field-programmable gate array,we realize digital control over the digital metamaterial.By programming different coding sequences,a single digital metamaterial has the ability to manipulate EM waves in different manners,thereby realizing‘programmable metamaterials’.The above concepts and physical phenomena are confirmed through numerical simulations and experiments using metasurfaces.展开更多
Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parame...Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parameters that do not occur in nature.Recently,the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements‘0’and‘1,'which possess opposite phase responses.Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves.We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements.By encoding the elements with elaborately designed coding sequences(both 1-bit and 2-bit sequences),the x-and y-polarized waves can be anomalously reflected or independently diffused in three dimensions.The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface,and the results are consistent with the measured results.We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions,thus providing powerful control of differently polarized electromagnetic waves.The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices.展开更多
Surface plasmon polaritons(SPPs)and their low-frequency counterparts(i.e.,spoof SPPs on artificial surfaces)have recently found numerous applications in photonics,but traditional devices to excite them(such as grating...Surface plasmon polaritons(SPPs)and their low-frequency counterparts(i.e.,spoof SPPs on artificial surfaces)have recently found numerous applications in photonics,but traditional devices to excite them(such as gratings and prism couplers)all suffer from problems of inherent low efficiency because the generated SPPs can decouple,returning to free space,and reflections at the device surface can never be avoided.Here,we propose a new SPP excitation scheme based on a transparent gradient metasurface and numerically demonstrate that it exhibits inherently high efficiency(~94%)because the designed meta-coupler suppresses both decoupling and surface reflections.As a practical realization of this concept,we fabricated a meta-coupler for operation in the microwave regime and performed near-field and far-field experiments to demonstrate that the achieved excitation efficiency for spoof SPPs reaches~73%,which is several times higher than that achieved by other available devices in this frequency domain.Our findings can motivate the design and fabrication of high-performance plasmonic devices to harvest light–matter interactions,particularly those related to spoof SPPs in the low-frequency domain.展开更多
Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applie...Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current de-vices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applica-tions such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by pas-sive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevicesthrough the different active materials deployed together with the different control mechanisms including electrical, ther-mal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.展开更多
The photonic spin Hall effect(SHE)in the reflection and refraction at an interface is very weak because of the weak spin-orbit interaction.Here,we report the observation of a giant photonic SHE in a dielectric-based m...The photonic spin Hall effect(SHE)in the reflection and refraction at an interface is very weak because of the weak spin-orbit interaction.Here,we report the observation of a giant photonic SHE in a dielectric-based metamaterial.The metamaterial is structured to create a coordinate-dependent,geometric Pancharatnam–Berry phase that results in an SHE with a spin-dependent splitting in momentum space.It is unlike the SHE that occurs in real space in the reflection and refraction at an interface,which results from the momentum-dependent gradient of the geometric Rytov–Vladimirskii–Berry phase.We theorize a unified description of the photonic SHE based on the two types of geometric phase gradient,and we experimentally measure the giant spin-dependent shift of the beam centroid produced by the metamaterial at a visible wavelength.Our results suggest that the structured metamaterial offers a potential method of manipulating spin-polarized photons and the orbital angular momentum of light and thus enables applications in spin-controlled nanophotonics.展开更多
基金This work was supported in part by the National High Tech(863)Projects(2012AA030402 and 2011AA010202)in part by the National Science Foundation of China(61138001,60990320 and 60990324)in part by the 111 Project(111-2-05)and in part by the Joint Research Center on Terahertz Science.
文摘Metamaterials are artificial structures that are usually described by effective medium parameters on the macroscopic scale,and these metamaterials are referred to as‘analog metamaterials’.Here,we propose‘digital metamaterials’through two steps.First,we present‘coding metamaterials’that are composed of only two types of unit cells,with 0 and p phase responses,which we name‘0’and‘1’elements,respectively.By coding‘0’and‘1’elements with controlled sequences(i.e.,1-bit coding),we can manipulate electromagnetic(EM)waves and realize different functionalities.The concept of coding metamaterials can be extended from 1-bit coding to 2-bit coding or higher.In 2-bit coding,four types of unit cells,with phase responses of 0,p/2,p,and 3p/2,are required to mimic the‘00’,‘01’,‘10’and‘11’elements,respectively.The 2-bit coding has greater freedom than 1-bit coding for controlling EM waves.Second,we propose a unique metamaterial particle that has either a‘0’or‘1’response controlled by a biased diode.Based on this particle,we present‘digital metamaterials’with unit cells that possess either a‘0’or‘1’state.Using a field-programmable gate array,we realize digital control over the digital metamaterial.By programming different coding sequences,a single digital metamaterial has the ability to manipulate EM waves in different manners,thereby realizing‘programmable metamaterials’.The above concepts and physical phenomena are confirmed through numerical simulations and experiments using metasurfaces.
基金supported by the National Science Foundation of China(61571117,61522106,61138001,61302018 and 61401089)Natural Science Foundation of the Jiangsu Province(BK2012019)the 111 Project(111-2-05).
文摘Metamaterials based on effective media can be used to produce a number of unusual physical properties(for example,negative refraction and invisibility cloaking)because they can be tailored with effective medium parameters that do not occur in nature.Recently,the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements‘0’and‘1,'which possess opposite phase responses.Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves.We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements.By encoding the elements with elaborately designed coding sequences(both 1-bit and 2-bit sequences),the x-and y-polarized waves can be anomalously reflected or independently diffused in three dimensions.The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface,and the results are consistent with the measured results.We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions,thus providing powerful control of differently polarized electromagnetic waves.The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices.
基金supported by the National Natural Science Foundation of China(Nos.11474057,11174055,11204040,and 11404063)the MOE of China(B06011)the Shanghai Science and Technology Committee(grant No.14PJ1401200).
文摘Surface plasmon polaritons(SPPs)and their low-frequency counterparts(i.e.,spoof SPPs on artificial surfaces)have recently found numerous applications in photonics,but traditional devices to excite them(such as gratings and prism couplers)all suffer from problems of inherent low efficiency because the generated SPPs can decouple,returning to free space,and reflections at the device surface can never be avoided.Here,we propose a new SPP excitation scheme based on a transparent gradient metasurface and numerically demonstrate that it exhibits inherently high efficiency(~94%)because the designed meta-coupler suppresses both decoupling and surface reflections.As a practical realization of this concept,we fabricated a meta-coupler for operation in the microwave regime and performed near-field and far-field experiments to demonstrate that the achieved excitation efficiency for spoof SPPs reaches~73%,which is several times higher than that achieved by other available devices in this frequency domain.Our findings can motivate the design and fabrication of high-performance plasmonic devices to harvest light–matter interactions,particularly those related to spoof SPPs in the low-frequency domain.
文摘Metasurfaces, two-dimensional equivalents of metamaterials, are engineered surfaces consisting of deep subwavelength features that have full control of the electromagnetic waves. Metasurfaces are not only being applied to the current de-vices throughout the electromagnetic spectrum from microwave to optics but also inspiring many new thrilling applica-tions such as programmable on-demand optics and photonics in future. In order to overcome the limits imposed by pas-sive metasurfaces, extensive researches have been put on utilizing different materials and mechanisms to design active metasurfaces. In this paper, we review the recent progress in tunable and reconfigurable metasurfaces and metadevicesthrough the different active materials deployed together with the different control mechanisms including electrical, ther-mal, optical, mechanical, and magnetic, and provide the perspective for their future development for applications.
基金This research was partially supported by the National Natural Science Foundation of China(Grants No.11274106,No.11474089 and No.11447010)the China Postdoctoral Science Foundation(Grant No.2014M562198)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department of China(Grant No.13B003)the Natural Science Foundation of Hunan Province(Grant No.2015JJ3026).
文摘The photonic spin Hall effect(SHE)in the reflection and refraction at an interface is very weak because of the weak spin-orbit interaction.Here,we report the observation of a giant photonic SHE in a dielectric-based metamaterial.The metamaterial is structured to create a coordinate-dependent,geometric Pancharatnam–Berry phase that results in an SHE with a spin-dependent splitting in momentum space.It is unlike the SHE that occurs in real space in the reflection and refraction at an interface,which results from the momentum-dependent gradient of the geometric Rytov–Vladimirskii–Berry phase.We theorize a unified description of the photonic SHE based on the two types of geometric phase gradient,and we experimentally measure the giant spin-dependent shift of the beam centroid produced by the metamaterial at a visible wavelength.Our results suggest that the structured metamaterial offers a potential method of manipulating spin-polarized photons and the orbital angular momentum of light and thus enables applications in spin-controlled nanophotonics.