The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging...The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.展开更多
At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic...At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic pollution issues.An ideal microwave absorber should have excellent dielectric and magnetic loss capabilities,thereby inducing attenuation and absorption of incident electromagnetic radiation.Recently,various carbon/magnetic metal composites have been developed and expected to become promising candidates for high-performance microwave absorbers.In this review,we introduce the mechanisms of microwave absorption and summarize the recent advances in carbon/magnetic metal composites.Preparation methods and microwave absorption properties of carbon/magnetic metal composites with different components,morphologies and microstructures are discussed in detail.Finally,the challenges and future prospects of carbon/magnetic metal absorbing materials are also proposed,which will be useful to develop high-performance microwave absorption materials.展开更多
Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behav...Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance.展开更多
基金supported by the Program for New Century Excellent Talents in Universities of China (No.NCET-06-0879)the National Natural Science Foundation of China (No.50331010)+2 种基金the Northwestern Polytechnical University Foundation of Fundamental Research (No.NPU-FFR-JC200808)the National Basic Research Program of China (No.2007CB613800)the Program of Introducing Talents of Discipline to Universities,China (No.08040)
文摘The effects of heat treatment on the microstructure and mechanical properties of laser solid forming (LSF) Ti-6Al-4V alloy were investigated The influences of the temperature and time of solution treatment and aging treatment were analyzed. The results show that the microstructure of LSFed samples consists of Widmanstatten α laths and a little acicular in columnar prior β grains with an average grain width of 300 μm, which grow epitaxiaUy from the substrate along the deposition direction (27). Solution treatment had an important effect on the width, aspect ratio, and volmne fraction of primary and secondary a laths, and aging treatment mainly affects the aspect ratio and volume fraction of primary α laths and the width and volume fraction of secondary a laths. Globular a phase was first observed in LSFed samples when the samples were heat treated with solution treatment (950℃, 8 h/air cooling (AC)) or with solution treatment (950℃, 1 h/AC) and aging treatment (550℃, above 8 h/AC), respectively. The coarsening and globularization mechanisms of a phase in LSFed Ti-6Al-4V alloy during heat treatment were presented. To obtain good integrated mechanical properties for LSFed Ti-6Al-4V alloys, an optimized heat treatment regimen was suggested.
基金financially supported by the National Science and Technology Major Project(No.2017-VI-0008-0078)the Joint Fund of the National Natural Science Foundation of China and Baosteel Group Corporation(No.U1560106)+1 种基金the Aeronautical Science Foundation of China(No.2016ZF51050)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry)。
文摘At present,developing high-efficiency microwave absorption materials with properties including lightweight,thin thickness,strong absorbing intensity and broad bandwidth is an urgent demand to solve the electromagnetic pollution issues.An ideal microwave absorber should have excellent dielectric and magnetic loss capabilities,thereby inducing attenuation and absorption of incident electromagnetic radiation.Recently,various carbon/magnetic metal composites have been developed and expected to become promising candidates for high-performance microwave absorbers.In this review,we introduce the mechanisms of microwave absorption and summarize the recent advances in carbon/magnetic metal composites.Preparation methods and microwave absorption properties of carbon/magnetic metal composites with different components,morphologies and microstructures are discussed in detail.Finally,the challenges and future prospects of carbon/magnetic metal absorbing materials are also proposed,which will be useful to develop high-performance microwave absorption materials.
基金Project(51671217)supported by the National Natural Science Foundation of ChinaProject(CX2017B047)supported by the Program of Innovation for Postgraduate of Hunan Province,China
文摘Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance.