AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithe...AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.展开更多
In this editorial,we comment on three articles published in a recent issue of World Journal of Gastroenterology.There is a pressing need for new research on autophagy's role in gastrointestinal(GI)disorders,and al...In this editorial,we comment on three articles published in a recent issue of World Journal of Gastroenterology.There is a pressing need for new research on autophagy's role in gastrointestinal(GI)disorders,and also novel insights into some liver conditions,such as metabolic dysfunction-associated fatty liver disease(MAFLD)and acute liver failure(ALF).Despite advancements,understanding autophagy's intricate mechanisms and implications in these diseases remains incomplete.Moreover,MAFLD's pathogenesis,encompassing hepatic steatosis and metabolic dysregulation,require further elucidation.Similarly,the mechanisms underlying ALF,a severe hepatic dysfunction,are poorly understood.Innovative studies exploring the interplay between autophagy and GI disorders,as well as defined mechanisms of MAFLD and ALF,are crucial for identifying therapeutic targets and enhancing diagnostic and treatment strategies to mitigate the global burden of these diseases.展开更多
基金Supported by the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62)Natural Science Foundation of Fujian Province(No.2020J01652).
文摘AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression.
基金Supported by the European Union-NextGenerationEU,through The National Recovery and Resilience Plan of The Republic of Bulgaria,No.BG-RRP-2.004-0008。
文摘In this editorial,we comment on three articles published in a recent issue of World Journal of Gastroenterology.There is a pressing need for new research on autophagy's role in gastrointestinal(GI)disorders,and also novel insights into some liver conditions,such as metabolic dysfunction-associated fatty liver disease(MAFLD)and acute liver failure(ALF).Despite advancements,understanding autophagy's intricate mechanisms and implications in these diseases remains incomplete.Moreover,MAFLD's pathogenesis,encompassing hepatic steatosis and metabolic dysregulation,require further elucidation.Similarly,the mechanisms underlying ALF,a severe hepatic dysfunction,are poorly understood.Innovative studies exploring the interplay between autophagy and GI disorders,as well as defined mechanisms of MAFLD and ALF,are crucial for identifying therapeutic targets and enhancing diagnostic and treatment strategies to mitigate the global burden of these diseases.