This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The defini...This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.展开更多
This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of m...This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of motion for dynamical functions under general infinitesimal transformation, the determining equations, the constraint restriction equations and the additional restriction equations of Mei symmetries of the system are constructed. The criterions of Mei symmetries, weak Mei symmetries and strong Mei symmetries of the system are given. New types of conserved quantities, i.e. the Mei symmetrical conserved quantities, the weak Mei symmetrical conserved quantities and the strong Mei symmetrical conserved quantities of a higher-order nonholonomic system, are obtained. Then, a deduction of the first-order nonholonomic system is discussed. Finally, two examples are given to illustrate the application of the method and then the results.展开更多
The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper studies the Mei symmetry and Mei conserved quantity for nonholonomic systems of unilateral Chetaev type in Nielsen style. The differential equations of motion of the system above are established. The definition and the criteria of Mei symmetry, loosely Mei symmetry, strictly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly by using Mei symmetry. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No. 10372053)
文摘This paper presents the Mei symmetries and new types of non-Noether conserved quantities for a higher-order nonholonomic constraint mechanical system. On the basis of the form invariance of differential equations of motion for dynamical functions under general infinitesimal transformation, the determining equations, the constraint restriction equations and the additional restriction equations of Mei symmetries of the system are constructed. The criterions of Mei symmetries, weak Mei symmetries and strong Mei symmetries of the system are given. New types of conserved quantities, i.e. the Mei symmetrical conserved quantities, the weak Mei symmetrical conserved quantities and the strong Mei symmetrical conserved quantities of a higher-order nonholonomic system, are obtained. Then, a deduction of the first-order nonholonomic system is discussed. Finally, two examples are given to illustrate the application of the method and then the results.
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.