A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorde...A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.展开更多
文摘A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.