The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends ...The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m展开更多
文摘The present study aims to analyze the shift in shoreline due to coastal processes and formulate available for best estimate of future shoreline positions based on precedent shorelines. Information on rates and trends of shoreline change can be used to improve the understanding of the underlying causes and potential effects of coastal erosion which can support informed coastal management decisions. In this paper, researchers go over the changes in the recent positions of the shoreline of the Balasore coast for the 38 years from 1975 through 2013. The study area includes the Balasore coastal region from Rasalpur to Udaypur together with Chandipur, Choumukh, Chandrabali as well as Bichitrapur. Transects wise shoreline data base were developed for approximately 67 kilometers of shoreline and erosional/accretional scenario has also been analysed by delineating the shoreline from Landsat imageries of 1975, 1980, 1990, 1995, 2000, 2005, 2010 and 2013. A simple Linear Regression Model and End Point Rate (EPR) have been adopted to take out the rate of change of shoreline and its future positions, based on empirical observations at 67 transects along the Balasore coast. It is found that the north eastern part of Balasore coast in the vicinity of Subarnarekha estuary and Chandrabali beach undergo high rates of shore line shift. The shoreline data were integrated for long- (about 17 years) and short-term (about 7 years) shift rates analysis to comprehend the shoreline change and prediction. For the prediction of future shoreline, the model has been validated with the present shoreline position (2013). The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point is observed. The positional error varies from??4.82 m to 212.41 m