提出一种自适应正则化的图像超分辨率重建算法.首先,利用局部残差均值自适应地计算各低分辨率图像通道的权值参数矩阵,可有效地利用各通道对应区域间的交叉信息;其次,利用正则项局部误差均值自适应地计算平衡正则项和保真项的正则化参...提出一种自适应正则化的图像超分辨率重建算法.首先,利用局部残差均值自适应地计算各低分辨率图像通道的权值参数矩阵,可有效地利用各通道对应区域间的交叉信息;其次,利用正则项局部误差均值自适应地计算平衡正则项和保真项的正则化参数矩阵,能较好地保持图像边缘纹理等信息.实验结果表明本文算法不但具有较高峰值信噪比(Peak signal to noise ratio,PSNR)和结构相似度(Structural similarity,SSIM),而且在边缘、纹理等细节区域具有更好的重建效果.展开更多
自适应技术可以用较少的数据来调整声学模型参数,从而达到较好的语音识别效果,它们大多用于自适应有口音的语音。将最大似然线性回归(Maximum Likelihood Linear Regression,MLLR)、最大后验概率(Maximum A Posteriori,MAP)自适应技术...自适应技术可以用较少的数据来调整声学模型参数,从而达到较好的语音识别效果,它们大多用于自适应有口音的语音。将最大似然线性回归(Maximum Likelihood Linear Regression,MLLR)、最大后验概率(Maximum A Posteriori,MAP)自适应技术用在远场噪声混响环境下来分析其在此环境下的识别性能。实验结果表明,仿真条件下,在墙壁反射系数为0.6,各种噪声环境下MAP有最好的自适应性能,在信噪比(Signal-to-Noise Ratio,SNR)分别为5 dB、10 dB、15 dB时,MAP使远场连续语音词错率(Word Error Rate,WER)平均降低了1.51%、12.82%、2.95%。真实条件下,MAP使WER下降幅度最大达到了37.13%。进一步验证了MAP良好的渐进性,且当自适应句数为1 000时,用MAP声学模型自适应方法得到的远场噪声混响连续语音的识别词错率比自适应前平均降低了12.5%。展开更多
本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分...本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分辨率复原图像阶跃边缘的陡坡性质,将三边滤波正则化应用于迭代运算中,更好地保护了图像的陡坡和屋顶边缘.算法可根据图像的纹理自动计算初始图像融合参数以及正则化函数中的梯度阈值等参数,解决了以往超分辨率图像复原算法参数调整复杂的问题.实验结果表明,本文算法在没有人工参与的情况下,重建图像的客观评价和主观质量均有明显提高.展开更多
Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (...Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.展开更多
文摘提出一种自适应正则化的图像超分辨率重建算法.首先,利用局部残差均值自适应地计算各低分辨率图像通道的权值参数矩阵,可有效地利用各通道对应区域间的交叉信息;其次,利用正则项局部误差均值自适应地计算平衡正则项和保真项的正则化参数矩阵,能较好地保持图像边缘纹理等信息.实验结果表明本文算法不但具有较高峰值信噪比(Peak signal to noise ratio,PSNR)和结构相似度(Structural similarity,SSIM),而且在边缘、纹理等细节区域具有更好的重建效果.
文摘本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分辨率复原图像阶跃边缘的陡坡性质,将三边滤波正则化应用于迭代运算中,更好地保护了图像的陡坡和屋顶边缘.算法可根据图像的纹理自动计算初始图像融合参数以及正则化函数中的梯度阈值等参数,解决了以往超分辨率图像复原算法参数调整复杂的问题.实验结果表明,本文算法在没有人工参与的情况下,重建图像的客观评价和主观质量均有明显提高.
基金supported by the National Natural Science Foundation of China(6100118741001256+1 种基金40971219)the National High Technology Research and Development Program of China(863 Program)(2013 AA122301)
文摘Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.