By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta(1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2(Ω) are st...By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta(1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2(Ω) are studied.The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers.Especially,some new techniques are used in this paper.展开更多
This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed poin...This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.展开更多
Using perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present the abstract results on the existence of solutions of one kind nonlinear Neumann boundary value problems r...Using perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present the abstract results on the existence of solutions of one kind nonlinear Neumann boundary value problems related to p-Laplacian operator. The equation discussed in this paper and the method used here extend and complement some of the previous work.展开更多
In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly sm...In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.展开更多
By using some results of pseudo-monotone operator, we discuss the existence and uniqueness of the solution of one kind nonlinear Neumann boundary value problems involving the p-Laplacian operator. We also construct an...By using some results of pseudo-monotone operator, we discuss the existence and uniqueness of the solution of one kind nonlinear Neumann boundary value problems involving the p-Laplacian operator. We also construct an iterative scheme converging strongly to this solution.展开更多
文摘By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta(1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2(Ω) are studied.The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers.Especially,some new techniques are used in this paper.
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.
基金Supported by the National Natural Science Foundation of China (Grant No.10771050)the Project of Science and Research of Hebei Education Department (Grant No.2009115)
文摘Using perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present the abstract results on the existence of solutions of one kind nonlinear Neumann boundary value problems related to p-Laplacian operator. The equation discussed in this paper and the method used here extend and complement some of the previous work.
基金the National Natural Science Foundation of China (10771050)
文摘In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.
基金Supported by the National Natural Science Foundation of China (No. 11071053)the Natural Science Foundation of Hebei Province (No.A2010001482)the project of Science and Research of Hebei Education Department (the second round in 2010)
文摘By using some results of pseudo-monotone operator, we discuss the existence and uniqueness of the solution of one kind nonlinear Neumann boundary value problems involving the p-Laplacian operator. We also construct an iterative scheme converging strongly to this solution.
基金Supported by by National Natural Science Foundation of China(11071053)the Natural Science Foundation of Hebei Province(A2010001482)the Key Project of Science and Research of Hebei Education Department(ZH2012080)