Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transport...Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transportation)with high value,and have triggered the demand for machining.However,the high brittleness,anisotropy,and heterogeneity of materials bring great challenges to machining,due to high mechanical and thermal loads,severe tool wear,and poor machining quality.With the increasing demand of FRCMCs-SiC parts,high-quality and high-efficient machining has become a hot issue.This review paper provides a detailed literature survey on the machining of FRCMCs-SiC.The material removal mechanism,defect form,and interfacial mechanical properties of FRCMCs-SiC were summarized.The machining processes of FRCMCs-SiC were introduced,and their respective advantages and disadvantages were compared.Given the low machinability(high hardness,high brittleness,anisotropy,and heterogeneity)of FRCMCs-SiC,preliminary experiments have proved that ultrasonic-assisted machining and laser-assisted machining have shown unique advantages in reducing force and tool wear,improving machining quality and machining efficiency.The machined surface integrity was discussed,the influence of process parameters on the machined surface quality was analyzed,and the machining defects of FRCMCs-SiC were summarized.But for FRCMCs-SiC,the existing quantitative evaluation of the machined surface integrity was weak and unsystematic.展开更多
基金the National Natural Science Foundation of China(No.51975368)。
文摘Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transportation)with high value,and have triggered the demand for machining.However,the high brittleness,anisotropy,and heterogeneity of materials bring great challenges to machining,due to high mechanical and thermal loads,severe tool wear,and poor machining quality.With the increasing demand of FRCMCs-SiC parts,high-quality and high-efficient machining has become a hot issue.This review paper provides a detailed literature survey on the machining of FRCMCs-SiC.The material removal mechanism,defect form,and interfacial mechanical properties of FRCMCs-SiC were summarized.The machining processes of FRCMCs-SiC were introduced,and their respective advantages and disadvantages were compared.Given the low machinability(high hardness,high brittleness,anisotropy,and heterogeneity)of FRCMCs-SiC,preliminary experiments have proved that ultrasonic-assisted machining and laser-assisted machining have shown unique advantages in reducing force and tool wear,improving machining quality and machining efficiency.The machined surface integrity was discussed,the influence of process parameters on the machined surface quality was analyzed,and the machining defects of FRCMCs-SiC were summarized.But for FRCMCs-SiC,the existing quantitative evaluation of the machined surface integrity was weak and unsystematic.