Gelatinization temperature (GT) is an important parameter for evaluating the cooking and eating quality of rice besides amylose content (AC). The inheritance of the genes affecting GT has been widely studied and is co...Gelatinization temperature (GT) is an important parameter for evaluating the cooking and eating quality of rice besides amylose content (AC). The inheritance of the genes affecting GT has been widely studied and is considered to be controlled by a major gene. Here, we report the map-based cloning of rice ALK that encodes the soluble starch synthase II (SSSII). Comparison between the DNA sequences from different rice varieties, together with the results obtained with digestion of the rice seeds in alkali solution, indicates that the base substitutions in coding se-quence of ALK may cause the alteration in GT.展开更多
Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a m...Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen Ⅲ oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. Histochemical analysis demonstrated that lesion formation in rlin1 was light-dependent accompanied by reactive oxygen species accumulated. These results suggest that tetrapyrrole participates in lesion formation in rice.展开更多
Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome develop- ment in Arabidopsis thaliana have been i...Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome develop- ment in Arabidopsis thaliana have been intensively studied, but genes regulating multicellular trichome development in plants remain unclear. Here, we characterized Cucumis sativus (cucumber) trichomes as representative multicellular and unbranched structures, and identified Micro-trichome (Mict), using map-based cloning in an F2 segregating population of 7,936 individuals generated from a spontaneous mict mutant. In mitt plants, trichomes in both leaves and fruits, are small, poorly developed, and denser than in the wild type. Sequence analysis revealed that a 2,649-bp genomic deletion, spanning the first and second exons, occurred in a plant-specific class I homeodomain-leucine zipper gene. Tissue-specific expression analysis indicated that Mict is strongly expressed in the trichome cells. Transcriptome profiling identified potential targets of Mict including putative homologs of genes known in other systems to regulate trichome development, meristem determinacy, and hormone responsiveness. Phylo- genic analysis charted the relationships among putative homologs in angiosperms. Our paper represents initial steps toward understanding the development of multicellular trichomes.展开更多
IspH is a key enzyme in the last step of the methyI-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the charac...IspH is a key enzyme in the last step of the methyI-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.展开更多
Increasing yield is one of the most important goals in crop breeding. Soybean (Glycine max L. Merr.), one of the most economically important leguminous seed crops, provides the majority of plant proteins, and more t...Increasing yield is one of the most important goals in crop breeding. Soybean (Glycine max L. Merr.), one of the most economically important leguminous seed crops, provides the majority of plant proteins, and more than a quarter of the world's food and animal feed (Graham and Vance, 2003). The yield of soybean is finally determined by the number of seeds per unit area, which affected by many characters, such as height, branching number, photosynthesis, seed size, seed number. The number of seeds per pod is taken for one of the critical components that related to yield (You et al., 1995).展开更多
基金supported by the National Special Program for Research and Transgenic Plants(Grant No.JY03-A-07-01)Natural Science Foundation,Zhejiang Province.
文摘Gelatinization temperature (GT) is an important parameter for evaluating the cooking and eating quality of rice besides amylose content (AC). The inheritance of the genes affecting GT has been widely studied and is considered to be controlled by a major gene. Here, we report the map-based cloning of rice ALK that encodes the soluble starch synthase II (SSSII). Comparison between the DNA sequences from different rice varieties, together with the results obtained with digestion of the rice seeds in alkali solution, indicates that the base substitutions in coding se-quence of ALK may cause the alteration in GT.
基金This work was supported by grants from the Ministry of Science and Technology of China(No.2009CB118506)the National Natural Science Foundation of China(Nos. 30825029 and 30621001)
文摘Lesion mimic is necrotic lesions on plant leaf or stem in the absence of pathogenic infection, and its exact biological mechanism is varied. By a large-scale screening of our T-DNA mutant population, we identified a mutant rice lesion initiation 1 (rlin1), which was controlled by a single nuclear recessive gene. Map-based cloning revealed that RLIN1 encoded a putative coproporphyrinogen Ⅲ oxidase in tetrapyrrole biosynthesis pathway. Sequencing results showed that a G to T substitution occurred in the second exon of RLIN1 and led to a missense mutation from Asp to Tyr. Ectopic expression of RLIN1 could rescue rlin1 lesion mimic phenotype. Histochemical analysis demonstrated that lesion formation in rlin1 was light-dependent accompanied by reactive oxygen species accumulated. These results suggest that tetrapyrrole participates in lesion formation in rice.
基金supported by the China 973 Program(2012CB113900)National Natural Science Foundation of China(31271291,31471156)+2 种基金Shanghai Municipal Committee of Science and Technology(13JC1403600)China Innovative Research Team,Ministry of EducationShanghai Graduate Education and Innovation Program (Horticulture)
文摘Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome develop- ment in Arabidopsis thaliana have been intensively studied, but genes regulating multicellular trichome development in plants remain unclear. Here, we characterized Cucumis sativus (cucumber) trichomes as representative multicellular and unbranched structures, and identified Micro-trichome (Mict), using map-based cloning in an F2 segregating population of 7,936 individuals generated from a spontaneous mict mutant. In mitt plants, trichomes in both leaves and fruits, are small, poorly developed, and denser than in the wild type. Sequence analysis revealed that a 2,649-bp genomic deletion, spanning the first and second exons, occurred in a plant-specific class I homeodomain-leucine zipper gene. Tissue-specific expression analysis indicated that Mict is strongly expressed in the trichome cells. Transcriptome profiling identified potential targets of Mict including putative homologs of genes known in other systems to regulate trichome development, meristem determinacy, and hormone responsiveness. Phylo- genic analysis charted the relationships among putative homologs in angiosperms. Our paper represents initial steps toward understanding the development of multicellular trichomes.
文摘IspH is a key enzyme in the last step of the methyI-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.
基金supported by the National Natural Science Foundation of China(Grant Nos.31271297 and 31222042) "One-hundred talents" Startup Funds from Chinese Academy of SciencesNational Key Basic Research Program(No. 2009CB 118402)
文摘Increasing yield is one of the most important goals in crop breeding. Soybean (Glycine max L. Merr.), one of the most economically important leguminous seed crops, provides the majority of plant proteins, and more than a quarter of the world's food and animal feed (Graham and Vance, 2003). The yield of soybean is finally determined by the number of seeds per unit area, which affected by many characters, such as height, branching number, photosynthesis, seed size, seed number. The number of seeds per pod is taken for one of the critical components that related to yield (You et al., 1995).