The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QM TS).该算法的主要思想是:首先,在任务排序阶段利用Q-learning算法中的自学...针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QM TS).该算法的主要思想是:首先,在任务排序阶段利用Q-learning算法中的自学习过程得到更加合理的任务序列;然后,在虚拟机分配阶段使用线性加权法综合考虑任务最早完成时间和计算节点的计算成本,达到同时优化多目标问题的目的;最后,以产生更小的makespan和总成本为目标函数对任务进行调度,得到任务完成后的实验结果.实验结果表明,QMTS算法在使用Q-learning对任务进行排序后可以得到比HEFT算法更小的makespan;并且根据优化多目标调度策略在任务执行过程中减少了makespan和总成本,是一种有效的多目标优化任务调度算法.展开更多
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
文摘针对云计算环境下的多目标任务调度问题,提出一种新的基于Q学习的多目标优化任务调度算法(Multi-objective Task Scheduling Algorithm based on Q-learning,QM TS).该算法的主要思想是:首先,在任务排序阶段利用Q-learning算法中的自学习过程得到更加合理的任务序列;然后,在虚拟机分配阶段使用线性加权法综合考虑任务最早完成时间和计算节点的计算成本,达到同时优化多目标问题的目的;最后,以产生更小的makespan和总成本为目标函数对任务进行调度,得到任务完成后的实验结果.实验结果表明,QMTS算法在使用Q-learning对任务进行排序后可以得到比HEFT算法更小的makespan;并且根据优化多目标调度策略在任务执行过程中减少了makespan和总成本,是一种有效的多目标优化任务调度算法.