Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection ...Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection of complex traits in many crop species.Both of these methods detect quantitative trait loci(QTL) by identifying marker–trait associations,and the only fundamental difference between them is that between mapping populations,which directly determine mapping resolution and power.Based on this difference,we first summarize in this review the advances and limitations of family-based mapping and natural population-based mapping instead of linkage mapping and association mapping.We then describe statistical methods used for improving detection power and computational speed and outline emerging areas such as large-scale meta-analysis for genetic mapping in crops.In the era of next-generation sequencing,there has arisen an urgent need for proper population design,advanced statistical strategies,and precision phenotyping to fully exploit high-throughput genotyping.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionthe National Natural Science Foundation of China(Nos.91535103,31391632,and 31200943)+4 种基金the National High Technology Research and Development Program of China(No.2014AA10A601-5)the Natural Science Foundation of Jiangsu Province(No.BK2012261)the Natural Science Foundation of Jiangsu Higher Education Institution(No.14KJA210005)the Postgraduate Research and Innovation Project in Jiangsu Province(No.KYLX151368)the Innovative Research Team of University in Jiangsu Province
文摘Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection of complex traits in many crop species.Both of these methods detect quantitative trait loci(QTL) by identifying marker–trait associations,and the only fundamental difference between them is that between mapping populations,which directly determine mapping resolution and power.Based on this difference,we first summarize in this review the advances and limitations of family-based mapping and natural population-based mapping instead of linkage mapping and association mapping.We then describe statistical methods used for improving detection power and computational speed and outline emerging areas such as large-scale meta-analysis for genetic mapping in crops.In the era of next-generation sequencing,there has arisen an urgent need for proper population design,advanced statistical strategies,and precision phenotyping to fully exploit high-throughput genotyping.