The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal...The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal nitrate concentration (Nopt) and influent C/N ratio was evaluated, in which the influont chemical oxygen demand (COD) concentration was stabilized at (2905:10)mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0±0. 5)mg/L. The results indicated that: (1) the nitrate concentration in the main anoxic zone had an effect on denitrifying dephosphatation capability, and the average percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa) increased with nitrate cancentration increasing, i.e., increasing from 62.1% at2.0 mg/L to63.7%, 65.6%, 68.1%, and 72.3% at 2.2, 2.4, 2.6 and 2.8mg/L, respectively; (2) the Nopt as function of influent C/N ratio could be calculated by the equation: y = 0.67x^2-7.79x + 22. 21; the maximum percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa,max) as function of the Nopt could be calculated by the equation: y=0.77-0.33e^-(x/1.52). The Nopt was the important control parameter that must be optimized for operation of conveational biological nutrieat removal activated sludge (BNRAS) system.展开更多
The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphor...The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphorus and the sludge characteristics at salt concentrations(0.0,3.2,6.4,11.2 and 16.0 g L^(-1))were analyzed.With the salt concentration increasing,all the COD,NH_(4)^(+)-N,TN and TP removal rates exhibited a trend of decline,and exhibited an initial reduction and subsequent increase at every stage of salt concentration.NH_(4)^(+)-N,TN and TP removal rates were 92.7%,51.5%and 67.2%in 16 g L^(-1) salt concentration,respectively.And they were outperformed the literature reported and acceptable in practical applications.When the salinity of wastewater changed from 0.0 to 16.0 g L^(-1),the biomass yield coefficients increased from 0.0794 to 0.126 g VSS/g COD.Increased salinity had a detrimental effect on phosphorus-accumulating organisms(PAOs)and denitrifying PAOs(DPAOs)(especially DPAOs).Therefore,phosphorus removal gradually depended on PAO.The simultaneous nitrification and denitrification(SND)rate and nitrogen removal rate(including nitrification rate,denitrification rate,and total nitrogen removal rate)gradually decreased with the increased salinity.展开更多
The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhi...The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.展开更多
基金Water Pollution Control and Management of Science and Technology Majon Projects (No.2008ZX07207005)The Programs for Development of Science and Technology of Jilin Province of China (No.20071105)
文摘The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal nitrate concentration (Nopt) and influent C/N ratio was evaluated, in which the influont chemical oxygen demand (COD) concentration was stabilized at (2905:10)mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0±0. 5)mg/L. The results indicated that: (1) the nitrate concentration in the main anoxic zone had an effect on denitrifying dephosphatation capability, and the average percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa) increased with nitrate cancentration increasing, i.e., increasing from 62.1% at2.0 mg/L to63.7%, 65.6%, 68.1%, and 72.3% at 2.2, 2.4, 2.6 and 2.8mg/L, respectively; (2) the Nopt as function of influent C/N ratio could be calculated by the equation: y = 0.67x^2-7.79x + 22. 21; the maximum percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa,max) as function of the Nopt could be calculated by the equation: y=0.77-0.33e^-(x/1.52). The Nopt was the important control parameter that must be optimized for operation of conveational biological nutrieat removal activated sludge (BNRAS) system.
基金This work was supported by the Zhejiang Provincial Natural Science Foundation of China(LGF20E080003,LQ20E080002)National Natural Science Foundation of China(21808200)+2 种基金Major Social Development Project of Ningbo(2017C510006)the Ningbo Natural Science Foundation of China(2018A61028,202003N4312)BNU Interdisciplinary Research Foundation for the First-Year Doctoral Candidates(No.BNUXKJC1806).
文摘The effect of salinity on biological nitrogen and denitrifying phosphorus removal was investigated in a Modified University of Cape Town(MUCT)system.Removal rates of COD,NH_(4)^(+)-N,NO_(3)^(-)-N,NO_(2)^(-)-N,phosphorus and the sludge characteristics at salt concentrations(0.0,3.2,6.4,11.2 and 16.0 g L^(-1))were analyzed.With the salt concentration increasing,all the COD,NH_(4)^(+)-N,TN and TP removal rates exhibited a trend of decline,and exhibited an initial reduction and subsequent increase at every stage of salt concentration.NH_(4)^(+)-N,TN and TP removal rates were 92.7%,51.5%and 67.2%in 16 g L^(-1) salt concentration,respectively.And they were outperformed the literature reported and acceptable in practical applications.When the salinity of wastewater changed from 0.0 to 16.0 g L^(-1),the biomass yield coefficients increased from 0.0794 to 0.126 g VSS/g COD.Increased salinity had a detrimental effect on phosphorus-accumulating organisms(PAOs)and denitrifying PAOs(DPAOs)(especially DPAOs).Therefore,phosphorus removal gradually depended on PAO.The simultaneous nitrification and denitrification(SND)rate and nitrogen removal rate(including nitrification rate,denitrification rate,and total nitrogen removal rate)gradually decreased with the increased salinity.
基金National Natural Science Foundation of China(NSFC)(No.50978118)
文摘The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.