Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC ...Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.展开更多
The fast growing of urban areas in developing countries has brought serious problems on municipal solid waste (MSW) management. It will be rational to adopt an integrated approach to deal with such a challenge so th...The fast growing of urban areas in developing countries has brought serious problems on municipal solid waste (MSW) management. It will be rational to adopt an integrated approach to deal with such a challenge so that the overall eco-efficiency of MSW management could be improved. To better examine how attributes of integrated MSW management are being interpreted and put into practice, and to explore what changes should be made to improve the application of integrated MSW management, we employ a case study method so that lessons learned could be used to inform initiatives in other cities and the potential solution may offer feasible strategies. The case study city is Dalian, a typical seaport city with fast growing rate in economy. The outcomes of this case study show us that fragmented management structure, ineffective and inefficient enforcement of relevant regulations, backward technologies, limited financial resources and lack of public participation are main barriers for the implementation of integrated MSW management. Consequently, in order to overcome these barriers, we propose an integrated management framework on MSW management, aiming to maximize the overall eco-efficiency of MSW management.展开更多
基金Financial support provided by the National Basic Research Program of China(973 Project)(Grant No.2012CB719806)
文摘Engineering properties of municipal solid waste (MSW) depend largely on the waste's initial compositionand degree of degradation. MSWs in developing countries usually have a high kitchen waste content(called HKWC MSW). After comparing and analyzing the laboratory and field test results of physicalcomposition, hydraulic properties, gas generation and gas permeability, and mechanical properties forHKWC MSW and low kitchen waste content MSW (called LKWC MSW), the following findings wereobtained: (1) HKWC MSW has a higher initial water content (IWC) than LKWC MSW, but the field capacitiesof decomposed HKWC and LKWC MSWs are similar; (2) the hydraulic conductivity and gaspermeability for HKWC MSW are both an order of magnitude smaller than those for LKWC MSW; (3)compared with LKWC MSW, HKWC MSW has a higher landfill gas (LFG) generation rate but a shorterduration and a lower potential capacity; (4) the primary compression feature for decomposed HKWCMSW is similar to that of decomposed LKWC MSW, but the compression induced by degradation ofHKWC MSW is greater than that of LKWC MSW; and (5) the shear strength of HKWC MSW changessignificantly with time and strain. Based on the differences of engineering properties between these twokinds of MSWs, the geo-environmental issues in HKWC MSW landfills were analyzed, including highleachate production, high leachate mounds, low LFG collection efficiency, large settlement and slopestability problem, and corresponding advice for the management and design of HKWC MSW landfills wasrecommended.
基金This study was supported by 100 Talents Programme of the Chinese Academy of Science (2008-318), the National Natural Science Foundation of China (Grant No. 71033004), the Shenyang Municipal Government (F10-238-6-00).
文摘The fast growing of urban areas in developing countries has brought serious problems on municipal solid waste (MSW) management. It will be rational to adopt an integrated approach to deal with such a challenge so that the overall eco-efficiency of MSW management could be improved. To better examine how attributes of integrated MSW management are being interpreted and put into practice, and to explore what changes should be made to improve the application of integrated MSW management, we employ a case study method so that lessons learned could be used to inform initiatives in other cities and the potential solution may offer feasible strategies. The case study city is Dalian, a typical seaport city with fast growing rate in economy. The outcomes of this case study show us that fragmented management structure, ineffective and inefficient enforcement of relevant regulations, backward technologies, limited financial resources and lack of public participation are main barriers for the implementation of integrated MSW management. Consequently, in order to overcome these barriers, we propose an integrated management framework on MSW management, aiming to maximize the overall eco-efficiency of MSW management.