In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization dire...In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization directions and the delay time between fast and slow shear waves were derived from seismic recordings at eight stations on the southern segment of the Longmenshan fault zone. In the study region, the fast polarization directions show partition characteristics from south to north. And the systematic changes of the time delays between two split shear waves were also observed. As for spatial distribution, the NE fast polarization directions are consistent with the Longmenshan fault strike in the south of focal region, whereas the NW fast direction is parallel to the direction of regional principal compressive stress in the north of focal region. Stations BAX and TQU are respectively located on the Central and Front-range faults, and because of the direct influence of these faults, the fast directions at both stations show particularity. In time domain, after the main shock, the delay times at stations increased rapidly, and decreased after a period of time. Shear-wave splitting was caused mostly by stress-aligned microcracks in rock below the stations. The results demonstrate changes of local stress field during the main shock and the aftershocks. The stress on the Lushan Ms7.0 earthquake region increased after the main shock, with the stress release caused by the aftershocks and the stress reduced in the late stage.展开更多
Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ...Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.展开更多
A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meanin...A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meaningful information regarding the dynamic evolution of crustal deformation in the seismogenic zone. Our studies have shown that the occurrence of the Wenchuan earthquake led to the loading of compressive and sinistral shearing strain on the southern segment of the Maoxian-Wenchuan fault, whereby the extrusion strain accumulated at a greater rate than before the Wenchuan earthquake. The strain time series in the seismogenic zone revealed that the principal compression strain rates decreased from west to east in the direction of N30°–45°W. Furthermore, the area to the east of Beichuan-Yingxiu fault behaved as a zone of compressive deformation with obvious sinistral shearing deformation. The surface strain and the first shearing strain time series decreased with time, while the area to the west of the Beichuan-Yingxiu fault behaved as a zone of dextral shear deformation that increased with time. Furthermore, the regional deformation field before the Lushan earthquake showed that the rate of extrusion strain accumulation in the southern segment of the Longmenshan fault zone was obviously larger than before the Wenchuan earthquake. Moreover, the sinistral shearing strain accumulated in the area of the southern segment of the Maoxian-Wenchuan fault. Based on the above analysis, we consider that the eastward movement of the Bayan Har block increased considerably following the Wenchuan earthquake, which enhanced the accumulation of compression strain in the southern segment of the Longmenshan fault zone.展开更多
On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suit...On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suitability of these models has not been properly addressed. Here we collect 11 already-existing models, including those used in studies of the 2017 M_S 7.0 Jiuzhaigou earthquake,choose 10 local stations surrounding the earthquake, and employ the same technique(TRIT) to relocate the hypocenter. And furthermore, we choose a more suitable model from the 11 already-existed models by analyzing the relocation process and the relocated results for reasonability. Finally, our conclusion is that the model Fang 2018 is more suitable and the hypocenter parameters, 103.801°E,33.192°N and 15.8 km for longitude, latitude and depth, respectively, and 2017-08-08 13:19:46.66 for its origin time, based on this model should be recommended for the 2017 M_S7.0 Jiuzhaigou earthquake.展开更多
The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). Th...The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). The 1-Hz GNSS data from eight CGPS stations, which are located between 30 km and 200 km from the hypocenter, were processed within quasi-real-time. The near-field surface deformation indicated the following characteristics : the near-field movements were limited to several centimeters ; the peak of the deformation wave was significantly larger than the static permanent offset; at the beginning of the event, the north wall of the fault moved to the southeast as the south wall moved to the southwest ; station SCTQ, which was the closest station to the hypocenter at 30 km, had the largest static permanent displacement of 2 cm; the peaks of the deformation waves were 1.5 cm, 5 cm and 3 cm, to the east, the south and vertically upward, respectively ; and the peaks of velocity and acceleration, derived from the deformation, were 3.4 cm/s and 5.3 cm/s^2,respectively.展开更多
On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake ge...On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.展开更多
Results of analysis of variation of cross fault short-baseline and short-range leveling in Western Yunnan Earthquake Test Site (WYETS), results show that among five observation stations of cross fault short-baseline a...Results of analysis of variation of cross fault short-baseline and short-range leveling in Western Yunnan Earthquake Test Site (WYETS), results show that among five observation stations of cross fault short-baseline and short-range leveling in WYETS before the Lijiang MS7.0 Earthquake occurred in February 1996 only Yongsheng observation station (epicentral distance 82 km) located at Chenghai fault shows great variation about one year before the earthquake. And the nearest observation station, Lijiang (epicentral distance 42 km); presents great coseismic variation, but does not show obvious anomalous variation before the earthquake. There are no significant variations related to the earthquake at the other three observation stations. Two methods are used in analysis of the observed data and some valuable results have been obtained.展开更多
By using the integral dynamic adjustment of the "segmentation rate," this paper processes the leveling repetition measurement data of the Dianxi(western Yunnan)area since the 1980s,makes the fitting of the v...By using the integral dynamic adjustment of the "segmentation rate," this paper processes the leveling repetition measurement data of the Dianxi(western Yunnan)area since the 1980s,makes the fitting of the velocity surface for vertical deformation with multi-surface function,and splits information of the vertical deformation field.The dynamic evolution of the deformation field and vertical deformation information norm-shear deformation,extension deformation,volumetric deformation,and quasi acceleration,which are the distribution characteristics of variation,are studied by using the information split before the Lijiang earthquake with MS7.0(February 3,1996)in the north of the Dianxi(western Yunnan)leveling network.The results indicate that in Dianxi(western Yunnan)area,the acute vertical differential movement of the large-scale deformation velocity high gradient belt and high information norm distribution in the Lijiang,Yongsheng,and its adjacent areas in the middle stage of the 1980s is the reflection展开更多
Jiuzhaigou is a world-heritage site located in the plateau area of Northwest Sichuan Province,China.Serious slope failures in the epicentral area were triggered by the Ms7.0 Jiuzhaigou earthquake occurred on August 8,...Jiuzhaigou is a world-heritage site located in the plateau area of Northwest Sichuan Province,China.Serious slope failures in the epicentral area were triggered by the Ms7.0 Jiuzhaigou earthquake occurred on August 8,2017.The source areas of the hazards are usually concentrated near ridge crests,revealingthe possible occurrence of ground motion amplification phenomena.To explore the role of the amplification of ground motions in the formation of earthquake-triggered slope failures,two seismometers were installed,on the next day after the main shock,at the bottom of the slopeof Jubao Mountain near the seismogenic fault.The two monitoring sites are located at elevations of 1414 m(J1)and 1551 m(J2,the top of the mountain).Five aftershocks were recorded by the monitoring instruments.We compared the mean levels of the peak ground acceleration(PGA)observed at different locations,and investigated the directional variations inthe shaking energy by analyzing the polar diagrams of the Arias intensity(Ia).Then,in order to identify the directional resonance phenomenonandtheir frequencies and amplification coefficients,we examined the horizontal-to-vertical spectral ratio(HVSR)and the standard spectral ratio(SSR).Polar diagrams of theArias intensity(Ia)indicated that the site response of Jubao Mountain showed a pronounced directivity(in theEW direction)with shaking maxima near the hill top oriented orthogonally to the elongation of the relief.We observed anobvious resonance phenomenonat site J2 at relatively low frequencies(2.5-9 Hz)and very weak spectral amplifications at site J1 at high frequencies(5-15 Hz),which suggested that the predominant frequency of monitoring site J2 was obviously attenuated and that the difference in the spectra was related to the influences of the local-scale site conditions of the whole mountain.The results of spectral ratio analyses(HVSR and SSR)showed that the direction of resonance was concentrated around an EW orientation,and the amplification factors near the hill top were larger than 2.It s展开更多
The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2...The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.展开更多
By inverting GPS data recorded at stations of the Crustal Movement Observation Network of China (CMONOC) near the 2013 Lushan Ms7.0 earthquake, we found a horizontal displacement of 22 mm at a site about 32 kin SW o...By inverting GPS data recorded at stations of the Crustal Movement Observation Network of China (CMONOC) near the 2013 Lushan Ms7.0 earthquake, we found a horizontal displacement of 22 mm at a site about 32 kin SW of the epicenter and vertical displacements of as much as 12.4 mm at several sites. The vertical displacements were generally uplift on the west side of the nearby Longmenshan fault zone and subsidence on the east side. We also found coseismic ionospheric disturbances about 0.5 to 0.9 TECU in amplitude that lasted for about one hour.展开更多
A rapid and accurate assessment of the stability of surveying and mapping reference points is important for post - disaster rescue, disaster relief and reconstruction activities. Using Precise Point Positioning (PPP...A rapid and accurate assessment of the stability of surveying and mapping reference points is important for post - disaster rescue, disaster relief and reconstruction activities. Using Precise Point Positioning (PPP) technology, a rapid assessment of the stability of the IGS sites in China was performed after the Ms7.0 Lushan earthquake using rapid precise ephemeris and rapid precise satellite clock products. The results show that the earthquake had a very small impact and did not cause significant permanent deformation at the IGS sites. Most of the sites were unaffected and remained stable after the earthquake.展开更多
The M_S7. 0 Jiuzhaigou earthquake occurred on August 8,2017. The earthquake occurred in the vicinity of the Tazang fault,the Minjiang fault and the Huya fault,where the focal mechanism is of the strike slip type. The ...The M_S7. 0 Jiuzhaigou earthquake occurred on August 8,2017. The earthquake occurred in the vicinity of the Tazang fault,the Minjiang fault and the Huya fault,where the focal mechanism is of the strike slip type. The static and dynamic anomalies of the gravity field can provide important physical field information for studying the structural properties of deep crust. Multi-scale decomposition techniques are used to separate Bouguer gravity at different depths and give some explanation to gravity variations at different time space scales. The results indicate that the wavelet multi-scale results of the EGM2008 model and the measured gravity data are consistent. Through comparative analysis,it is found that the Jiuzhaigou earthquake occurred in the stress enhanced region. The variation of gravity field at different time scales has a certain scientific significance for further understanding potential earthquake risk trend.展开更多
The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results sho...The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results show that the MS5. 4 earthquake is regarded as an immediate foreshock of the Yutian MS7. 3 main shock. The frequency of strong aftershock sequences was low and their number declined quickly,and the maximum aftershock was a MS5. 7 earthquake. According to analysis of the historical earthquake sequence type,and parameter of h-value,b-value and energy release ratio between main shock and sequence etc.,we found the preliminary conclusion that the Yutian MS7. 3 earthquake sequence in 2014 was a foreshock-main shock-aftershock type.展开更多
After the occurrence of an earthquake,strong motion observation networks can record ground motion at distributed observation stations. Based on the ground motion parameters from these records,the spatial distribution ...After the occurrence of an earthquake,strong motion observation networks can record ground motion at distributed observation stations. Based on the ground motion parameters from these records,the spatial distribution of seismic intensity can be quickly determined,and the degree of damage in different areas can be estimated. This information provides the technical basis for the emergency response,so as to ensure that rescue teams can reach extreme earthquake areas and carry out the search and rescue operation in an accurate and timely manner to reduce casualties and property loss. In this paper,we introduced 7 intensity algorithms and compared the results with the records of the Jiuzhaigou M_S7. 0 earthquake. We found that the differences between the instrumental intensities calculated by each method and the macro intensities were within a 1-degree range,which suggested good practicality of these different methods. The results calculated by the industrial standards-based calculation method and the integrated test showed good consistency.展开更多
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery ...Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 40904023, 41274063 and 41174070)Scientific Investigation of April 20, 2013 M7.0 Sichuan Lushan Earthquake
文摘In this paper, variations of shear wave splitting in the 2013 Lushan Ms7.0 earthquake sequence were studied. By analyzing shear wave particle motion of local events in the shear wave window, the fast polarization directions and the delay time between fast and slow shear waves were derived from seismic recordings at eight stations on the southern segment of the Longmenshan fault zone. In the study region, the fast polarization directions show partition characteristics from south to north. And the systematic changes of the time delays between two split shear waves were also observed. As for spatial distribution, the NE fast polarization directions are consistent with the Longmenshan fault strike in the south of focal region, whereas the NW fast direction is parallel to the direction of regional principal compressive stress in the north of focal region. Stations BAX and TQU are respectively located on the Central and Front-range faults, and because of the direct influence of these faults, the fast directions at both stations show particularity. In time domain, after the main shock, the delay times at stations increased rapidly, and decreased after a period of time. Shear-wave splitting was caused mostly by stress-aligned microcracks in rock below the stations. The results demonstrate changes of local stress field during the main shock and the aftershocks. The stress on the Lushan Ms7.0 earthquake region increased after the main shock, with the stress release caused by the aftershocks and the stress reduced in the late stage.
基金supported by the National Natural Science Foundation of China(41204058)the Running Foundation of the Gravity Network Center of China(201301008)
文摘Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41274008,41104004)the Basic Research Project of Institute of Earthquake Science of China Earthquake Administration(Grant No.2014IES010101)
文摘A continuous GPS array across the southern segment of the Longmenshan fault zone recorded the deformation during the process of the Lushan MS7.0 earthquake that occurred on April 20, 2013. Such data can provide meaningful information regarding the dynamic evolution of crustal deformation in the seismogenic zone. Our studies have shown that the occurrence of the Wenchuan earthquake led to the loading of compressive and sinistral shearing strain on the southern segment of the Maoxian-Wenchuan fault, whereby the extrusion strain accumulated at a greater rate than before the Wenchuan earthquake. The strain time series in the seismogenic zone revealed that the principal compression strain rates decreased from west to east in the direction of N30°–45°W. Furthermore, the area to the east of Beichuan-Yingxiu fault behaved as a zone of compressive deformation with obvious sinistral shearing deformation. The surface strain and the first shearing strain time series decreased with time, while the area to the west of the Beichuan-Yingxiu fault behaved as a zone of dextral shear deformation that increased with time. Furthermore, the regional deformation field before the Lushan earthquake showed that the rate of extrusion strain accumulation in the southern segment of the Longmenshan fault zone was obviously larger than before the Wenchuan earthquake. Moreover, the sinistral shearing strain accumulated in the area of the southern segment of the Maoxian-Wenchuan fault. Based on the above analysis, we consider that the eastward movement of the Bayan Har block increased considerably following the Wenchuan earthquake, which enhanced the accumulation of compression strain in the southern segment of the Longmenshan fault zone.
基金supported by the DQJB project (DQJB16B05) of the Institute of Geophysics,CEAthe NSFC project (41474046)
文摘On Aug.8, 2017, an M_S 7.0 earthquake struck Jiuzhaigou, a county of Sichuan province, China. A number of investigations and studies have been conducted, some of which involved local velocity models. However, the suitability of these models has not been properly addressed. Here we collect 11 already-existing models, including those used in studies of the 2017 M_S 7.0 Jiuzhaigou earthquake,choose 10 local stations surrounding the earthquake, and employ the same technique(TRIT) to relocate the hypocenter. And furthermore, we choose a more suitable model from the 11 already-existed models by analyzing the relocation process and the relocated results for reasonability. Finally, our conclusion is that the model Fang 2018 is more suitable and the hypocenter parameters, 103.801°E,33.192°N and 15.8 km for longitude, latitude and depth, respectively, and 2017-08-08 13:19:46.66 for its origin time, based on this model should be recommended for the 2017 M_S7.0 Jiuzhaigou earthquake.
基金supported by the National Natural Science Foundation of China(41274027)the Director Foundation of Institute of Seismology, China Earthquake Administration(IS201156063)
文摘The April 20, 2013, Ms7.0 Lushan earthquake was successfully recorded by closely spaced Continuous Global Positioning System (CGPS) stations owned by the Crustal Movement Observation Network of Chi- na (CMONC). The 1-Hz GNSS data from eight CGPS stations, which are located between 30 km and 200 km from the hypocenter, were processed within quasi-real-time. The near-field surface deformation indicated the following characteristics : the near-field movements were limited to several centimeters ; the peak of the deformation wave was significantly larger than the static permanent offset; at the beginning of the event, the north wall of the fault moved to the southeast as the south wall moved to the southwest ; station SCTQ, which was the closest station to the hypocenter at 30 km, had the largest static permanent displacement of 2 cm; the peaks of the deformation waves were 1.5 cm, 5 cm and 3 cm, to the east, the south and vertically upward, respectively ; and the peaks of velocity and acceleration, derived from the deformation, were 3.4 cm/s and 5.3 cm/s^2,respectively.
基金funded by National Key Basic Research and Development Program(grant No.2008CB42570),China
文摘On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.
基金This project was sponsored by the Application Basis Research Foundation of Yunnan Province (97D06), China.
文摘Results of analysis of variation of cross fault short-baseline and short-range leveling in Western Yunnan Earthquake Test Site (WYETS), results show that among five observation stations of cross fault short-baseline and short-range leveling in WYETS before the Lijiang MS7.0 Earthquake occurred in February 1996 only Yongsheng observation station (epicentral distance 82 km) located at Chenghai fault shows great variation about one year before the earthquake. And the nearest observation station, Lijiang (epicentral distance 42 km); presents great coseismic variation, but does not show obvious anomalous variation before the earthquake. There are no significant variations related to the earthquake at the other three observation stations. Two methods are used in analysis of the observed data and some valuable results have been obtained.
基金This project was sponsored by the "Ninth Five-Year ScienceTechnology Plan" (95-04-04-01-01) of the State Seismological Bureau, China
文摘By using the integral dynamic adjustment of the "segmentation rate," this paper processes the leveling repetition measurement data of the Dianxi(western Yunnan)area since the 1980s,makes the fitting of the velocity surface for vertical deformation with multi-surface function,and splits information of the vertical deformation field.The dynamic evolution of the deformation field and vertical deformation information norm-shear deformation,extension deformation,volumetric deformation,and quasi acceleration,which are the distribution characteristics of variation,are studied by using the information split before the Lijiang earthquake with MS7.0(February 3,1996)in the north of the Dianxi(western Yunnan)leveling network.The results indicate that in Dianxi(western Yunnan)area,the acute vertical differential movement of the large-scale deformation velocity high gradient belt and high information norm distribution in the Lijiang,Yongsheng,and its adjacent areas in the middle stage of the 1980s is the reflection
基金financially supported by the National Natural Science Foundation of China(Grand Nos.41877235,1704243)the Funds for Creative Research Groups of China(Grant No.41521002)the Independent Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2015Z001)
文摘Jiuzhaigou is a world-heritage site located in the plateau area of Northwest Sichuan Province,China.Serious slope failures in the epicentral area were triggered by the Ms7.0 Jiuzhaigou earthquake occurred on August 8,2017.The source areas of the hazards are usually concentrated near ridge crests,revealingthe possible occurrence of ground motion amplification phenomena.To explore the role of the amplification of ground motions in the formation of earthquake-triggered slope failures,two seismometers were installed,on the next day after the main shock,at the bottom of the slopeof Jubao Mountain near the seismogenic fault.The two monitoring sites are located at elevations of 1414 m(J1)and 1551 m(J2,the top of the mountain).Five aftershocks were recorded by the monitoring instruments.We compared the mean levels of the peak ground acceleration(PGA)observed at different locations,and investigated the directional variations inthe shaking energy by analyzing the polar diagrams of the Arias intensity(Ia).Then,in order to identify the directional resonance phenomenonandtheir frequencies and amplification coefficients,we examined the horizontal-to-vertical spectral ratio(HVSR)and the standard spectral ratio(SSR).Polar diagrams of theArias intensity(Ia)indicated that the site response of Jubao Mountain showed a pronounced directivity(in theEW direction)with shaking maxima near the hill top oriented orthogonally to the elongation of the relief.We observed anobvious resonance phenomenonat site J2 at relatively low frequencies(2.5-9 Hz)and very weak spectral amplifications at site J1 at high frequencies(5-15 Hz),which suggested that the predominant frequency of monitoring site J2 was obviously attenuated and that the difference in the spectra was related to the influences of the local-scale site conditions of the whole mountain.The results of spectral ratio analyses(HVSR and SSR)showed that the direction of resonance was concentrated around an EW orientation,and the amplification factors near the hill top were larger than 2.It s
基金funded by the Spark Program of Earthquake Science of China(XH15047Y)the National Science Foundation of China(41404043)
文摘The regional tectonic background and characteristics of active faults of the Yutian MS7.3earthquake on February 12,2014 are discussed in this paper.After the analysis of the epicenter area of the MS7.3 earthquake in 2014 and the focal mechanisms of the former strong earthquakes around it,the authors deduced that the seismogenic fault of the MS7.3earthquake is the east branch of the Ashikule fault.The MS7.3 earthquake in 2014 and the MS7.3 earthquake in 2008 are two strong earthquake events on the different sections of the Altun Tagh fault,where the fault behavior changes from sinistral slip to normal faulting because of the extensional tail effects in the southern end of the Altun Tagh fault.It is concluded that the two MS7.3 earthquakes have the same dynamic source,and the MS7.3earthquake in 2008 promoted the occurrence of the MS7.3 earthquake in 2014.Finally,we calculate the Coulomb stress change to the seismogenic fault of the MS7.3 earthquake in2014 from the MS7.3 earthquake in 2008 using the layered crust model.The result also shows that the MS7.3 earthquake in 2008 accelerated the occurrence of the MS7.3earthquake in 2014.
文摘By inverting GPS data recorded at stations of the Crustal Movement Observation Network of China (CMONOC) near the 2013 Lushan Ms7.0 earthquake, we found a horizontal displacement of 22 mm at a site about 32 kin SW of the epicenter and vertical displacements of as much as 12.4 mm at several sites. The vertical displacements were generally uplift on the west side of the nearby Longmenshan fault zone and subsidence on the east side. We also found coseismic ionospheric disturbances about 0.5 to 0.9 TECU in amplitude that lasted for about one hour.
文摘A rapid and accurate assessment of the stability of surveying and mapping reference points is important for post - disaster rescue, disaster relief and reconstruction activities. Using Precise Point Positioning (PPP) technology, a rapid assessment of the stability of the IGS sites in China was performed after the Ms7.0 Lushan earthquake using rapid precise ephemeris and rapid precise satellite clock products. The results show that the earthquake had a very small impact and did not cause significant permanent deformation at the IGS sites. Most of the sites were unaffected and remained stable after the earthquake.
基金funded by the National Key Research and Development Program of China(2018YFC1503305)the National Nature Science Foundation of China(41874092)
文摘The M_S7. 0 Jiuzhaigou earthquake occurred on August 8,2017. The earthquake occurred in the vicinity of the Tazang fault,the Minjiang fault and the Huya fault,where the focal mechanism is of the strike slip type. The static and dynamic anomalies of the gravity field can provide important physical field information for studying the structural properties of deep crust. Multi-scale decomposition techniques are used to separate Bouguer gravity at different depths and give some explanation to gravity variations at different time space scales. The results indicate that the wavelet multi-scale results of the EGM2008 model and the measured gravity data are consistent. Through comparative analysis,it is found that the Jiuzhaigou earthquake occurred in the stress enhanced region. The variation of gravity field at different time scales has a certain scientific significance for further understanding potential earthquake risk trend.
基金funded by the Open-end Foundation of State Key Laboratory of Earthquake Dynamics(LED2014B01)Project of Earthquake Science Foundation of Xinjiang,China(20120201)
文摘The basic parameters,seismogenic structure and seismic sequences characteristics of the Yutian MS7. 3 earthquake on February 12,2014 are introduced and compared to the Yutian MS7. 3 earthquake in 2008. The results show that the MS5. 4 earthquake is regarded as an immediate foreshock of the Yutian MS7. 3 main shock. The frequency of strong aftershock sequences was low and their number declined quickly,and the maximum aftershock was a MS5. 7 earthquake. According to analysis of the historical earthquake sequence type,and parameter of h-value,b-value and energy release ratio between main shock and sequence etc.,we found the preliminary conclusion that the Yutian MS7. 3 earthquake sequence in 2014 was a foreshock-main shock-aftershock type.
基金sponsored by the State Key Research and Development Program of China(2016YFC1402800)the Basic R&D Fund for Central Level Public Service Research Institute,China(DQJB17T01)the National Natural Foundation of China(U1434210,51421005)
文摘After the occurrence of an earthquake,strong motion observation networks can record ground motion at distributed observation stations. Based on the ground motion parameters from these records,the spatial distribution of seismic intensity can be quickly determined,and the degree of damage in different areas can be estimated. This information provides the technical basis for the emergency response,so as to ensure that rescue teams can reach extreme earthquake areas and carry out the search and rescue operation in an accurate and timely manner to reduce casualties and property loss. In this paper,we introduced 7 intensity algorithms and compared the results with the records of the Jiuzhaigou M_S7. 0 earthquake. We found that the differences between the instrumental intensities calculated by each method and the macro intensities were within a 1-degree range,which suggested good practicality of these different methods. The results calculated by the industrial standards-based calculation method and the integrated test showed good consistency.
基金jointly supported by National Science Foundation of China(41302171)Active Fault Exploration in China(60112304)Basic Scientific Research Funds of China Earthquake Administration(2014IES0401,2012IES010303)
文摘Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.