In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st...In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).展开更多
In this study, a new four-parameter distribution called the Modi Exponentiated Exponential distribution was proposed and studied. The new distribution has three shape and one scale parameters. Its mathematical and sta...In this study, a new four-parameter distribution called the Modi Exponentiated Exponential distribution was proposed and studied. The new distribution has three shape and one scale parameters. Its mathematical and statistical properties were investigated. The parameters of the new model were estimated using the method of Maximum Likelihood Estimation. Monte Carlo simulation was used to evaluate the performance of the MLEs through average bias and RMSE. The flexibility and goodness-of-fit of the proposed distribution were demonstrated by applying it to two real data sets and comparing it with some existing distributions.展开更多
In this work, we derive an exact vacuum solution for a cylindrically symmetric metric in an extended gravity theory developed by Novello, De Lorenci and Luciane (hereafter referred to as the NDL theory) which is inspi...In this work, we derive an exact vacuum solution for a cylindrically symmetric metric in an extended gravity theory developed by Novello, De Lorenci and Luciane (hereafter referred to as the NDL theory) which is inspired in the Born-Infeld theory. The main goal of this paper is to nd a cosmic string solution for the NDL theory. However, a careful analysis of the metric shows that it is asymptotically singular and therefore does not represent a cosmic string solution.展开更多
文摘In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).
文摘In this study, a new four-parameter distribution called the Modi Exponentiated Exponential distribution was proposed and studied. The new distribution has three shape and one scale parameters. Its mathematical and statistical properties were investigated. The parameters of the new model were estimated using the method of Maximum Likelihood Estimation. Monte Carlo simulation was used to evaluate the performance of the MLEs through average bias and RMSE. The flexibility and goodness-of-fit of the proposed distribution were demonstrated by applying it to two real data sets and comparing it with some existing distributions.
文摘In this work, we derive an exact vacuum solution for a cylindrically symmetric metric in an extended gravity theory developed by Novello, De Lorenci and Luciane (hereafter referred to as the NDL theory) which is inspired in the Born-Infeld theory. The main goal of this paper is to nd a cosmic string solution for the NDL theory. However, a careful analysis of the metric shows that it is asymptotically singular and therefore does not represent a cosmic string solution.