The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the p...The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the parameters. The approximate joint confidence intervals for the parameters, the approximate confidence regions and percentile bootstrap intervals of confidence are discussed, and several Markov chain Monte Carlo (MCMC) techniques are also presented. The parts of mean square error (MSEs) and credible intervals lengths, the estimators of Bayes depend on non-informative implement more effective than the maximum likelihood estimates (MLEs) and bootstrap. Comparing the models, the MSEs, average confidence interval lengths of the MLEs, and Bayes estimators for parameters are less significant for censored models.展开更多
文摘The purpose of this article offers different algorithms of Weibull Geometric (WG) distribution estimation depending on the progressive Type II censoring samples plan, spatially the joint confidence intervals for the parameters. The approximate joint confidence intervals for the parameters, the approximate confidence regions and percentile bootstrap intervals of confidence are discussed, and several Markov chain Monte Carlo (MCMC) techniques are also presented. The parts of mean square error (MSEs) and credible intervals lengths, the estimators of Bayes depend on non-informative implement more effective than the maximum likelihood estimates (MLEs) and bootstrap. Comparing the models, the MSEs, average confidence interval lengths of the MLEs, and Bayes estimators for parameters are less significant for censored models.