Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec...Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.展开更多
With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardi...With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%.展开更多
基金the National Natural Science Foundation of China under Grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2022JJ50318 and 2022JJ30621Scientific Research Fund of Hunan Provincial Education Department of China under Grant 22A0200 and 20K098。
文摘Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal.
基金supported by Faculty of Computing and Informatics,University Malaysia Sabah,Jalan UMS,Kota Kinabalu Sabah 88400,Malaysia.
文摘With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%.