Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TE...Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TENG),a flexible self-powered tactile sensor composed of micro-frustum-arrays-structured polydimethylsiloxane(PDMS)film/copper(Cu)electrodes,and poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE))nanofibers has been demonstrated.The TENG-based self-powered tactile sensor can generate electrical signals through the contact-separation process of two triboelectric layers under external mechanical stimuli.Due to the uniform and controllable micro-frustum-arrays structure fabricated by micro-electro-mechanical system(MEMS)process and the P(VDF-TrFE)nanofibers fabricated by electrostatic spinning,the flexible PDMS-based sensor presents high sensitivity of 2.97 V kPa^-1,stability of 40,000 cycles(no significant decay),response time of 60 ms at 1 Hz,low detection pressure of a water drop(~4 Pa,35 mg)and good linearity of 0.99231 in low pressure region.Since the PDMS film presents ultra-flexibility and excellent-biocompatibility,the sensor can be comfortably attached on human body.Furthermore,the tactile sensor can recognize various types of human body movements by the corresponding electrical signals.Therefore,the as-prepared TENGs are potential on the prospects of gesture detection,health assessment,human-machine interfaces and so on.展开更多
Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sens...Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.展开更多
高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(S...高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(Sol-Gel)技术在每个悬臂梁上异质集成制备锆钛酸铅(Pb(Zr_(0.53)Ti_(0.47)O_3,PZT)压电功能厚膜层,通过MEMS工艺和引线键合技术完成器件础结构制造。输出性能测试结果表明,器件一阶谐振频率为41 Hz,3 gn加速度激励下输出电压峰峰值为264.00 m V;在器件两端加载3.00 MΩ负载时输出功率最大,为0.72 n W。展开更多
基金financially supported by the National Natural Science Foundation of China(51605449,51675493 and51705476)the National Key R&D Program of China(2018YFF0300605)+2 种基金Shanxi “1331 Project” Key Subject Construction(1331KSC)the Applied Fundamental Research Program of Shanxi Province(201601D021070)Zhangjiakou Science and Technology Research and Development Plan of Zhangjiakou City(1811009B-10)
文摘Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TENG),a flexible self-powered tactile sensor composed of micro-frustum-arrays-structured polydimethylsiloxane(PDMS)film/copper(Cu)electrodes,and poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE))nanofibers has been demonstrated.The TENG-based self-powered tactile sensor can generate electrical signals through the contact-separation process of two triboelectric layers under external mechanical stimuli.Due to the uniform and controllable micro-frustum-arrays structure fabricated by micro-electro-mechanical system(MEMS)process and the P(VDF-TrFE)nanofibers fabricated by electrostatic spinning,the flexible PDMS-based sensor presents high sensitivity of 2.97 V kPa^-1,stability of 40,000 cycles(no significant decay),response time of 60 ms at 1 Hz,low detection pressure of a water drop(~4 Pa,35 mg)and good linearity of 0.99231 in low pressure region.Since the PDMS film presents ultra-flexibility and excellent-biocompatibility,the sensor can be comfortably attached on human body.Furthermore,the tactile sensor can recognize various types of human body movements by the corresponding electrical signals.Therefore,the as-prepared TENGs are potential on the prospects of gesture detection,health assessment,human-machine interfaces and so on.
文摘Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.
文摘高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(Sol-Gel)技术在每个悬臂梁上异质集成制备锆钛酸铅(Pb(Zr_(0.53)Ti_(0.47)O_3,PZT)压电功能厚膜层,通过MEMS工艺和引线键合技术完成器件础结构制造。输出性能测试结果表明,器件一阶谐振频率为41 Hz,3 gn加速度激励下输出电压峰峰值为264.00 m V;在器件两端加载3.00 MΩ负载时输出功率最大,为0.72 n W。