The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integ...The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integrated truth function τ when n converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Lukasiewicz logic and the continuous valued Lukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.展开更多
In this paper, the probability significance of fuzzy systems is revealed. It is pointed out that COG method, a defuzzification technique used commonly in fuzzy systems, is reasonable and is the optimal method in the s...In this paper, the probability significance of fuzzy systems is revealed. It is pointed out that COG method, a defuzzification technique used commonly in fuzzy systems, is reasonable and is the optimal method in the sense of mean square. Based on different fuzzy implication operators, several typical probability distributions such as Zadeh distribution, Mamdani distribution, Lukasiewicz distribution, etc, are given. Those distributions act as "inner kernels" of fuzzy systems. Furthermore, by some properties of probability distributions of fuzzy systems, it is also demonstrated that CRI method, proposed by Zadeh, for constructing fuzzy systems is basically reasonable and effective. Besides, the special action of uniform probability distributions in fuzzy systems is characterized. Finally, the relationship between CRI method and triple I method is discussed. In the sense of construction of fuzzy systems, when restricting three fuzzy implication operators in triple I method to the same operator, CRI method and triple I method may be related in the following three basic ways: 1) Two methods are equivalent; 2) the latter is a degeneration of the former; 3) the latter is trivial whereas the former is not. When three fuzzy implication operators in triple I method are not restricted to the same operator, CRI method is a special case of triple I method; that is, triple I method is a more comprehensive algorithm. Since triple I method has a good logical foundation and comprises an idea of optimization of reasoning, triple I method will possess a beautiful vista of application.展开更多
This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into...This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.展开更多
First, we reviewed the definitions of lattice implication algebras, lattice implication subalgebras, and LI-ideals, and provided an equivalent definition of LI-ideal. Then we investigated some properties of lattice im...First, we reviewed the definitions of lattice implication algebras, lattice implication subalgebras, and LI-ideals, and provided an equivalent definition of LI-ideal. Then we investigated some properties of lattice implication subalgebra and U-ideal, and found the least lattice implication subalgebra. Finally, the relation between lattice implication subalgebra and LI-ideal is presented. It is proved that no LI-ideals are non-trivial lattice implication subalgebras.展开更多
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras...The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra.In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.展开更多
The relationship among diverse fuzzy semantics vs. the corresponding logic consequence operators has been analyzed systematically The results that compactness and logical compactness of fuzzy semantics are equivalent ...The relationship among diverse fuzzy semantics vs. the corresponding logic consequence operators has been analyzed systematically The results that compactness and logical compactness of fuzzy semantics are equivalent to compactness and continuity of the logic consequence operator induced by the semantics respectively have been proved under certain conditions. A general compactness theorem of fuzzy semantics have been established which says that every fuzzy semantics defined on a free algebra with members corresponding to continuous functions is compact.展开更多
1 Introduction L-clausal forms is an interesting class of formulas in Eukasiewicz logic that was shown to be NP-complete[1].These formulas are defined over the following Lukasiewicz operations:negation-x=1-x strong di...1 Introduction L-clausal forms is an interesting class of formulas in Eukasiewicz logic that was shown to be NP-complete[1].These formulas are defined over the following Lukasiewicz operations:negation-x=1-x strong disjunction x■y=min{1,x+y},strong conjunction x⊙y=max{x+y-1,0}and weak disjunction x■y=max{x,y}.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.10331010)
文摘The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic Ln is proposed. A limit theorem is obtained, which says that the truth function τ-n induced by truth degrees converges to the integrated truth function τ when n converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Lukasiewicz logic and the continuous valued Lukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.
基金supported by the National Natural Science Foundation of China(Grant No.60474023).
文摘In this paper, the probability significance of fuzzy systems is revealed. It is pointed out that COG method, a defuzzification technique used commonly in fuzzy systems, is reasonable and is the optimal method in the sense of mean square. Based on different fuzzy implication operators, several typical probability distributions such as Zadeh distribution, Mamdani distribution, Lukasiewicz distribution, etc, are given. Those distributions act as "inner kernels" of fuzzy systems. Furthermore, by some properties of probability distributions of fuzzy systems, it is also demonstrated that CRI method, proposed by Zadeh, for constructing fuzzy systems is basically reasonable and effective. Besides, the special action of uniform probability distributions in fuzzy systems is characterized. Finally, the relationship between CRI method and triple I method is discussed. In the sense of construction of fuzzy systems, when restricting three fuzzy implication operators in triple I method to the same operator, CRI method and triple I method may be related in the following three basic ways: 1) Two methods are equivalent; 2) the latter is a degeneration of the former; 3) the latter is trivial whereas the former is not. When three fuzzy implication operators in triple I method are not restricted to the same operator, CRI method is a special case of triple I method; that is, triple I method is a more comprehensive algorithm. Since triple I method has a good logical foundation and comprises an idea of optimization of reasoning, triple I method will possess a beautiful vista of application.
文摘This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies), introduced by Ying. It investigates topological notions defined by means of -open sets when these are planted into the frame-work of Ying’s fuzzifying topological spaces (by Lukasiewicz logic in [0, 1]). In this paper we introduce some sorts of operations, called general fuzzifying operations from P(X) to , where (X, τ) is a fuzzifying topological space. By making use of them we contract neighborhood structures, derived sets, closure operations and interior operations.
基金The National Natural Science Foundationof China (No.60875034)the Specialized Research Fundfor the Doctoral Program of Higher Education of China (No.20060613007)
文摘First, we reviewed the definitions of lattice implication algebras, lattice implication subalgebras, and LI-ideals, and provided an equivalent definition of LI-ideal. Then we investigated some properties of lattice implication subalgebra and U-ideal, and found the least lattice implication subalgebra. Finally, the relation between lattice implication subalgebra and LI-ideal is presented. It is proved that no LI-ideals are non-trivial lattice implication subalgebras.
基金The 973 NationalKey BasicResearchand Development Program of China (No .2002CB312106 ) theChinaPostdoctoralScience Foundation (N o.2004035715)+1 种基金 the Science & Technology Program of Zhejiang Province in C hina(N o.2004C31098 )thePostdoctoraSlcienceFoundationofZhejiangProvinceinChina (No .2004-bsh-023).
文摘The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra.In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
文摘The relationship among diverse fuzzy semantics vs. the corresponding logic consequence operators has been analyzed systematically The results that compactness and logical compactness of fuzzy semantics are equivalent to compactness and continuity of the logic consequence operator induced by the semantics respectively have been proved under certain conditions. A general compactness theorem of fuzzy semantics have been established which says that every fuzzy semantics defined on a free algebra with members corresponding to continuous functions is compact.
文摘1 Introduction L-clausal forms is an interesting class of formulas in Eukasiewicz logic that was shown to be NP-complete[1].These formulas are defined over the following Lukasiewicz operations:negation-x=1-x strong disjunction x■y=min{1,x+y},strong conjunction x⊙y=max{x+y-1,0}and weak disjunction x■y=max{x,y}.