Negative stiffness mechanisms can improve low-frequency vibration isolation performance and have been widely used in the vibration isolation of precision equipment. However, the negative stiffness mechanism usually in...Negative stiffness mechanisms can improve low-frequency vibration isolation performance and have been widely used in the vibration isolation of precision equipment. However, the negative stiffness mechanism usually introduces a nonlinear stiffness,resulting in a nonlinear response and worsening the vibration isolation performance, especially under large amplitude vibration.In this paper, an electromagnetic spring with linear negative stiffness(ESLNS) is proposed, in which the antagonistic ampere forces of the energized coils are used to generate negative stiffness within a long linear stroke. The magnetic field distribution is improved through the design of the magnetic circuit, thereby increasing the stiffness generation efficiency. The stiffness can be adjusted bidirectionally by current within the range of positive and negative stiffness. An electromagnetic stiffness model was established based on the equivalent magnetic circuit method. Experimental measurements verified the accuracy of the model and proved the linearity of the electromagnetic spring. A vibration isolator with high static and low dynamic stiffness(HSLDS) based on the ESLNS is designed and tested. The experimental results prove that the introduction of the ESLNS can effectively expand the isolation frequency band without changing the equilibrium position. Moreover, the vibration isolator with ESLNS does not produce nonlinear response. The proposed electromagnetic spring with linear negative stiffness extends the application range of HSLDS isolators to a large amplitude vibration environment.展开更多
针对船舶机械振动的低频线谱主动控制,文章采用输出力大、频响平直、无接触式的磁悬浮作动器,分析了永磁偏置式作动器的电-磁-力耦合特性,推导了磁悬浮主被动隔振系统运动方程和系统稳定性影响因素;研制了满足船舶应用要求、具有冲击摇...针对船舶机械振动的低频线谱主动控制,文章采用输出力大、频响平直、无接触式的磁悬浮作动器,分析了永磁偏置式作动器的电-磁-力耦合特性,推导了磁悬浮主被动隔振系统运动方程和系统稳定性影响因素;研制了满足船舶应用要求、具有冲击摇摆适应能力的磁悬浮-气囊主被动混合隔振器。采用收敛快速的窄带多通道Fx-Newton算法,并针对线谱频率波动时的控制鲁棒性,提出了窄带滤波相位差的自适应补偿环节。在船用200 k W柴发机组上进行了主被动混合隔振实验,未开启线谱控制时,可获得>32.8 d B的宽频隔振效果;控制开启后,可进一步有效衰减传递到基座的多根线谱振动,并且在柴发机组的转速波动工况下依然能实现快速收敛、稳定和高效控制。该主被动混合隔振系统可满足船舶机械低频线谱控制的工程实用要求。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos. 62325302, 62203076, 62103065)the China Postdoctoral Science Foundation(Grant No. 2021M700584)+1 种基金the Program of Shanghai Academic/Technology Research Leader(Grant No. 21XD1421400)the Natural Science Foundation of Chongqing, China(Grant No.cstc2020jcyj-zdxmX0014)。
文摘Negative stiffness mechanisms can improve low-frequency vibration isolation performance and have been widely used in the vibration isolation of precision equipment. However, the negative stiffness mechanism usually introduces a nonlinear stiffness,resulting in a nonlinear response and worsening the vibration isolation performance, especially under large amplitude vibration.In this paper, an electromagnetic spring with linear negative stiffness(ESLNS) is proposed, in which the antagonistic ampere forces of the energized coils are used to generate negative stiffness within a long linear stroke. The magnetic field distribution is improved through the design of the magnetic circuit, thereby increasing the stiffness generation efficiency. The stiffness can be adjusted bidirectionally by current within the range of positive and negative stiffness. An electromagnetic stiffness model was established based on the equivalent magnetic circuit method. Experimental measurements verified the accuracy of the model and proved the linearity of the electromagnetic spring. A vibration isolator with high static and low dynamic stiffness(HSLDS) based on the ESLNS is designed and tested. The experimental results prove that the introduction of the ESLNS can effectively expand the isolation frequency band without changing the equilibrium position. Moreover, the vibration isolator with ESLNS does not produce nonlinear response. The proposed electromagnetic spring with linear negative stiffness extends the application range of HSLDS isolators to a large amplitude vibration environment.
文摘针对船舶机械振动的低频线谱主动控制,文章采用输出力大、频响平直、无接触式的磁悬浮作动器,分析了永磁偏置式作动器的电-磁-力耦合特性,推导了磁悬浮主被动隔振系统运动方程和系统稳定性影响因素;研制了满足船舶应用要求、具有冲击摇摆适应能力的磁悬浮-气囊主被动混合隔振器。采用收敛快速的窄带多通道Fx-Newton算法,并针对线谱频率波动时的控制鲁棒性,提出了窄带滤波相位差的自适应补偿环节。在船用200 k W柴发机组上进行了主被动混合隔振实验,未开启线谱控制时,可获得>32.8 d B的宽频隔振效果;控制开启后,可进一步有效衰减传递到基座的多根线谱振动,并且在柴发机组的转速波动工况下依然能实现快速收敛、稳定和高效控制。该主被动混合隔振系统可满足船舶机械低频线谱控制的工程实用要求。