In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment...In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment of the dam. The results highlight the following facts:(1) for the same flow, the low water level decreased, flood water level changed little, lowest water level increased, and highest water level decreased at the hydrological stations in the downstream of the dam;(2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls;" the ratio of low-water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations between different impoundment stages;(3) the low water level decrease slowed down during the channel erosion in the Upper Jingjiang reach and reaches upstream but sped up in the Lower Jingjiang reach and reaches downstream; measures should be taken to prevent the decrease in the channel water level;(4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the low water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of channel and waterway regulations; and(5) the geometry of the channels above bankfulls did not significantly change; however, the comprehensive channel resistance increased under the combined effects of riverbed coarsening, beach vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out.展开更多
Long term record (1933-2014) of Water Level (WL), nutrient concentrations, plankton densities, and temperatures in the epilimnion of Lake Kinneret was analyzed. The aim is to identify if water quality is deteriorated ...Long term record (1933-2014) of Water Level (WL), nutrient concentrations, plankton densities, and temperatures in the epilimnion of Lake Kinneret was analyzed. The aim is to identify if water quality is deteriorated when the WL is low. It was found that water temperature increased and the composition and biomass of plankton communities were modified. Nitrogen and TDP decreased but TP slightly increased in the epilimnion during low WL conditions. The quality of epilimnetic water was not deteriorated and followed by a slight oligotrophism trend.展开更多
基金National Key Research and Development Program of China,No.2016YFC0402106National Natural Science Foundation of China,No.51579123,No.51579185,No.51339001+1 种基金Supported by the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science,No.2016HLG02Fundamental Research Funds for Central Welfare Research Institutes,No.TKS160103
文摘In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment of the dam. The results highlight the following facts:(1) for the same flow, the low water level decreased, flood water level changed little, lowest water level increased, and highest water level decreased at the hydrological stations in the downstream of the dam;(2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls;" the ratio of low-water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations between different impoundment stages;(3) the low water level decrease slowed down during the channel erosion in the Upper Jingjiang reach and reaches upstream but sped up in the Lower Jingjiang reach and reaches downstream; measures should be taken to prevent the decrease in the channel water level;(4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the low water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of channel and waterway regulations; and(5) the geometry of the channels above bankfulls did not significantly change; however, the comprehensive channel resistance increased under the combined effects of riverbed coarsening, beach vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out.
文摘Long term record (1933-2014) of Water Level (WL), nutrient concentrations, plankton densities, and temperatures in the epilimnion of Lake Kinneret was analyzed. The aim is to identify if water quality is deteriorated when the WL is low. It was found that water temperature increased and the composition and biomass of plankton communities were modified. Nitrogen and TDP decreased but TP slightly increased in the epilimnion during low WL conditions. The quality of epilimnetic water was not deteriorated and followed by a slight oligotrophism trend.