This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achi...This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.展开更多
The Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to investigate the transport and evolution processes of organi...The Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to investigate the transport and evolution processes of organic carbon (OC) aerosols in the springtime of 2001. The simulated OC mixing ratios are compared with ground level observations at three remote sites in Japan during the Aerosol Characterization Experiment Asia (ACE-Asia) field campaign. It is found that the modeled OC concentrations are generally in good agreement with the observed ones, and the model reproduces the time variations in OC mixing ratios reasonably well. Model results show that high levels (larger than 16 mg.m-2) of column burden of OC aerosols concentrated in the middle reaches of Yangtse River and southern China, and that in most regions of China to the south of Yellow River the column burden was over 7 mg.m-2, while the isopleth of 4 mg.m-2 extended to the inner area of northwestern Pacific Ocean.展开更多
Soil samples collected from several sites along an altitudinal transect on the eastern slope of the Tibetan Plateau were analyzed for hexachlorobenzenes(HCHs) and dichlorodiphenyltrichloroethanes(DDTs).The results sho...Soil samples collected from several sites along an altitudinal transect on the eastern slope of the Tibetan Plateau were analyzed for hexachlorobenzenes(HCHs) and dichlorodiphenyltrichloroethanes(DDTs).The results showed that HCHs and DDTs were found in the soil samples from the remote high altitude areas away from source regions,which confirmed the long-range atmospheric transport phenomenon of these organochlorine pesticides(OCPs) insecticides.The OCP concentrations in the soils had a significant negative correlation with altitude;they showed a trend to increase with decreasing altitude,but the increase was not continuous,being interrupted at some moderate-altitude sites on the transect.The distances from the source region,landforms,soil properties,and physical-chemical properties of OCPs were more important than total organic carbon content to the distribution of OCPs in soils disturbed by human activities.An analysis of the compositions of HCH isomers and DDTs revealed predominantly low ratios of α-HCH to γ-HCH,ranging from 0.06 to 4.79,which suggested current lindane inputs.On the other hand,low p,p-DDT/p,p-DDE and o,p-DDT/p,p-DDT ratios were observed,indicating mainly aged historical DDT residues in the study area.展开更多
Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably br...Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent.展开更多
East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation eff...East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990 s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research,including dust emissions, long-range transport, radiative forcing(RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.展开更多
The long-range transport of oxidized sulfur(sulfur dioxide(SO2) and sulfate) and oxidized nitrogen(nitrogen oxides(NOx ) and nitrate) in East Asia is an area of increasing scientific interest and political con...The long-range transport of oxidized sulfur(sulfur dioxide(SO2) and sulfate) and oxidized nitrogen(nitrogen oxides(NOx ) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring.However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales(e.g., a year). The source–receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because:(1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source–receptor relationships;(2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and(3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source–receptor relationships of the oxidized S and N pollutants.展开更多
基金This work was supported by the National Natural Science Foundation of China(62075169,62003247,62061160370)the Key Research and Development Program of Hubei Province(2020BAB113).
文摘This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
文摘The Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to investigate the transport and evolution processes of organic carbon (OC) aerosols in the springtime of 2001. The simulated OC mixing ratios are compared with ground level observations at three remote sites in Japan during the Aerosol Characterization Experiment Asia (ACE-Asia) field campaign. It is found that the modeled OC concentrations are generally in good agreement with the observed ones, and the model reproduces the time variations in OC mixing ratios reasonably well. Model results show that high levels (larger than 16 mg.m-2) of column burden of OC aerosols concentrated in the middle reaches of Yangtse River and southern China, and that in most regions of China to the south of Yellow River the column burden was over 7 mg.m-2, while the isopleth of 4 mg.m-2 extended to the inner area of northwestern Pacific Ocean.
基金Supported by the National Natural Science Foundation of China(No.40473043)the Research Fund for the Doctoral Program of Higher Education,China(No.20090145110004)
文摘Soil samples collected from several sites along an altitudinal transect on the eastern slope of the Tibetan Plateau were analyzed for hexachlorobenzenes(HCHs) and dichlorodiphenyltrichloroethanes(DDTs).The results showed that HCHs and DDTs were found in the soil samples from the remote high altitude areas away from source regions,which confirmed the long-range atmospheric transport phenomenon of these organochlorine pesticides(OCPs) insecticides.The OCP concentrations in the soils had a significant negative correlation with altitude;they showed a trend to increase with decreasing altitude,but the increase was not continuous,being interrupted at some moderate-altitude sites on the transect.The distances from the source region,landforms,soil properties,and physical-chemical properties of OCPs were more important than total organic carbon content to the distribution of OCPs in soils disturbed by human activities.An analysis of the compositions of HCH isomers and DDTs revealed predominantly low ratios of α-HCH to γ-HCH,ranging from 0.06 to 4.79,which suggested current lindane inputs.On the other hand,low p,p-DDT/p,p-DDE and o,p-DDT/p,p-DDT ratios were observed,indicating mainly aged historical DDT residues in the study area.
基金National Natural Science Foundation of China(No.41674082)National Natural Science Foundation of China(No.41774018)。
文摘Mapping function errors are usually not taken into consideration, when space geodetic data observed by VLBI, GNSS and some other techniques are utilized to estimate troposphere delay, which could, however, probably bring non-ignorable errors to solutions. After analyzing the variation of mapping function errors with elevation angles based on several-year meteorological data, this paper constructed a model of this error and then proposed a two-step estimation method of troposphere delay with consideration of mapping function errors. The experimental results indicate that the method put forward by this paper could reduce the slant path delay residuals efficiently and improve the estimation accuracy of wet tropospheric delay to some extent.
基金National Natural Science Foundation of China(41405003 and 41521004)supported by the Office of Science,U.S.Department of Energy(DOE),as part of its Regional and Global Climate Modeling ProgramThe Pacific Northwest National Laboratory is operated for the DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830
文摘East Asian dust(EAD) exerts considerable impacts on the energy balance and climate/climate change of the earth system through its influence on solar and terrestrial radiation, cloud properties, and precipitation efficiency. Providing an accurate description of the life cycle and climate effects of EAD is therefore critical to better understanding of climate change and socioeconomic development in East Asia and even worldwide. Dust modeling has undergone substantial development since the late 1990 s, associated with improved understanding of the role of EAD in the earth system. Here, we review the achievements and progress made in recent decades in terms of dust modeling research,including dust emissions, long-range transport, radiative forcing(RF), and climate effects of dust particles over East Asia. Numerous efforts in dust/EAD modeling have been directed towards furnishing more sophisticated physical and chemical processes into the models on higher spatial resolutions. Meanwhile, more systematic observations and more advanced retrieval methods for instruments that address EAD related science issues have made it possible to evaluate model results and quantify the role of EAD in the earth system, and to further reduce the uncertainties in EAD simulations. Though much progress has been made, large discrepancies and knowledge gaps still exist among EAD simulations. The deficiencies and limitations that pertain to the performance of the EAD simulations referred to in the present study are also discussed.
基金supported by the National Natural Science Foundation of China (Nos. 41175105, 41175018, 41405121,41475113, 41505091, 41575124, and 91544221)the Key Project of the Chinese Academy of Sciences (No. XDB05030301)the Carbon and Nitrogen Cycle Project of the Institute of Atmospheric Physics, Chinese Academy of Sciences
文摘The long-range transport of oxidized sulfur(sulfur dioxide(SO2) and sulfate) and oxidized nitrogen(nitrogen oxides(NOx ) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring.However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales(e.g., a year). The source–receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because:(1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source–receptor relationships;(2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and(3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source–receptor relationships of the oxidized S and N pollutants.