Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestr...Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestrial medium, bionic propulsion method has great advantages in terms of manoeuvrability, efficiency, and reliability, because there is no need to switch between different propulsion systems. To explore the integrated driving technology of amphibious robot, a novel bio-inspired soft robotic fin for amphibious use is proposed in this paper. The bionic fin can swim underwater and walk on land by the same undulating motion. To balance the conflicting demands of flexibility underwater and rigidity on land, the undulating fin adopts a special combination of a membrane fin and a bending spring. A periodic longitudinal wave in horizontal direction has been found generating passively in dynamic analysis. To find the composite wave-driven mechanics, theoretical analysis is conducted based on the walking model and swimming model. A virtual prototype is built in ADAMS software to verify the walking mechanics. The simulation result reveals that the passive longitudinal wave is also periodical and the composite wave contributes to land walking. Finally, an amphibious robot prototype actuated by a pair of undulating fins has been developed. The experiments show that the robot can achieve multiple locomotion, including walking forward/backward, turning in place, swimming underwater, and crossing medium, thus giving evidence to the feasibility of the newly designed undulating fin for amphibious robot.展开更多
The performance of Aquatic Unmanned Aerial Vehicle(AquaUAV)has always been limited so far and far from practical applications,due to insufficient propulsion,large-resistance structure etc.Aerial-aquatic amphibians in ...The performance of Aquatic Unmanned Aerial Vehicle(AquaUAV)has always been limited so far and far from practical applications,due to insufficient propulsion,large-resistance structure etc.Aerial-aquatic amphibians in nature may facilitate the development of AquaUAV since their excellent amphibious locomotion capabilities evolved under long-term natural selection.This article will take four typical aerial-aquatic amphibians as representatives,i.e.,gannet,cormorant,flying fish and flying squid.We summarized the multi-mode locomotion process of common aerial-aquatic amphibians and the evolutionary trade-offs they have made to adapt to amphibious environments.The four typical propulsion mechanisms were investigated,which may further inspire the propulsion design of the AquaUAV.And their morphological models could guide the layout optimization.Finally,we reviewed the state of art in AquaUAV to validate the potential value of our bioinspiration,and discussed the futureprospects.展开更多
Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellen...Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellent robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy in robot domain.In this paper,the research development on fish swimming is presented,aiming to offer a reference for the later research.First,the research methods including experimental methods and simulation methods are detailed.Then the current research directions including fish locomotion mechanism,structure and function research and bionic robotic fish are outlined.Fish locomotion mechanism is discussed from three views:macroscopic view to find a unified principle,microscopic view to include muscle activity and intermediate view to study the behaviors of single fish and fish school.Structure and function research is mainly concentrated from three aspects:fin research,lateral line system and body stiffness.Bionic robotic fish research focuses on actuation,materials and motion control.The paper concludes with the future trend that curvature control,machine learning and multiple robotic fish system will play a more important role in this field.Overall,the intensive and comprehensive research on fish swimming will decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.展开更多
Some quadruped robots developed recently show better dynamic performance and environmental adaptability than ever, and have been preliminarily applied in the field of emergency disposal, military reconnaissance and in...Some quadruped robots developed recently show better dynamic performance and environmental adaptability than ever, and have been preliminarily applied in the field of emergency disposal, military reconnaissance and infrastructure construction. The development route, mechanisms design, control methods and mobile manipulating approaches of the quadruped robots are surveyed in this article. Firstly, the development route of the quadruped robot is combed, as the references of the forecast of the future work on quadruped robots. Then the bionic structure and the motion control method of the quadruped robot is summarized, the advantages and disadvantages are analyzed in aspects of gait switching, terrain adaption and disturbance resistance. Subsequently, aiming at the mobile manipulation of the quadruped robot, the representative leg-arm collaborative robots and the multi-task-oriented Whole-body Control (WBC) methods are introduced. Finally, the summary and future work of the quadruped robots is given.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52075537 and Grant No.52105289).
文摘Bionic amphibious robots have important prospects in scientific, commercial, and military fields. Compared with traditional amphibious robots which use propellers/jets for aquatic medium and wheels/tracks for terrestrial medium, bionic propulsion method has great advantages in terms of manoeuvrability, efficiency, and reliability, because there is no need to switch between different propulsion systems. To explore the integrated driving technology of amphibious robot, a novel bio-inspired soft robotic fin for amphibious use is proposed in this paper. The bionic fin can swim underwater and walk on land by the same undulating motion. To balance the conflicting demands of flexibility underwater and rigidity on land, the undulating fin adopts a special combination of a membrane fin and a bending spring. A periodic longitudinal wave in horizontal direction has been found generating passively in dynamic analysis. To find the composite wave-driven mechanics, theoretical analysis is conducted based on the walking model and swimming model. A virtual prototype is built in ADAMS software to verify the walking mechanics. The simulation result reveals that the passive longitudinal wave is also periodical and the composite wave contributes to land walking. Finally, an amphibious robot prototype actuated by a pair of undulating fins has been developed. The experiments show that the robot can achieve multiple locomotion, including walking forward/backward, turning in place, swimming underwater, and crossing medium, thus giving evidence to the feasibility of the newly designed undulating fin for amphibious robot.
基金supported by the National Science Foundation of China(62103035)Beijing Natural Science Foundation(3222016)+1 种基金the China Postdoctoral Science Foundation(2021M690337)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘The performance of Aquatic Unmanned Aerial Vehicle(AquaUAV)has always been limited so far and far from practical applications,due to insufficient propulsion,large-resistance structure etc.Aerial-aquatic amphibians in nature may facilitate the development of AquaUAV since their excellent amphibious locomotion capabilities evolved under long-term natural selection.This article will take four typical aerial-aquatic amphibians as representatives,i.e.,gannet,cormorant,flying fish and flying squid.We summarized the multi-mode locomotion process of common aerial-aquatic amphibians and the evolutionary trade-offs they have made to adapt to amphibious environments.The four typical propulsion mechanisms were investigated,which may further inspire the propulsion design of the AquaUAV.And their morphological models could guide the layout optimization.Finally,we reviewed the state of art in AquaUAV to validate the potential value of our bioinspiration,and discussed the futureprospects.
基金National Natural Science Foundation of China(Grant No.51275127).
文摘Fishes have learned how to achieve outstanding swimming performance through the evolution of hundreds of millions of years,which can provide bio-inspiration for robotic fish design.The premise of designing an excellent robotic fish include fully understanding of fish locomotion mechanism and grasp of the advanced control strategy in robot domain.In this paper,the research development on fish swimming is presented,aiming to offer a reference for the later research.First,the research methods including experimental methods and simulation methods are detailed.Then the current research directions including fish locomotion mechanism,structure and function research and bionic robotic fish are outlined.Fish locomotion mechanism is discussed from three views:macroscopic view to find a unified principle,microscopic view to include muscle activity and intermediate view to study the behaviors of single fish and fish school.Structure and function research is mainly concentrated from three aspects:fin research,lateral line system and body stiffness.Bionic robotic fish research focuses on actuation,materials and motion control.The paper concludes with the future trend that curvature control,machine learning and multiple robotic fish system will play a more important role in this field.Overall,the intensive and comprehensive research on fish swimming will decrease the gap between robotic fish and real fish and contribute to the broad application prospect of robotic fish.
基金the National Natural Science Founda-tion of China(Grant No.91948201,Grant No.62073191,Grant No.61973135)the Shandong Key R&D Program(No.2019JZZY020317)the Fundamental Research Funds of Shandong University(Grant No.2019GN017).
文摘Some quadruped robots developed recently show better dynamic performance and environmental adaptability than ever, and have been preliminarily applied in the field of emergency disposal, military reconnaissance and infrastructure construction. The development route, mechanisms design, control methods and mobile manipulating approaches of the quadruped robots are surveyed in this article. Firstly, the development route of the quadruped robot is combed, as the references of the forecast of the future work on quadruped robots. Then the bionic structure and the motion control method of the quadruped robot is summarized, the advantages and disadvantages are analyzed in aspects of gait switching, terrain adaption and disturbance resistance. Subsequently, aiming at the mobile manipulation of the quadruped robot, the representative leg-arm collaborative robots and the multi-task-oriented Whole-body Control (WBC) methods are introduced. Finally, the summary and future work of the quadruped robots is given.