流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manif...流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法,依然存在几点不足之处。因此,提出改进的MM-LLE算法,通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度,实验结果验证了改进算法的有效性。展开更多
流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分...流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.展开更多
变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(s...变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(successive projections algorithm,SPA)以及两者结合的变量筛选策略用于NIRS冗余变量的剔除;偏最小二乘回归(partial least squares regression,PLSR)和LLE-PLSR用于复杂样品光谱定量模型的构建。结果表明:MCUVE方法既能有效的提取信息变量,同时可以提高模型的预测精度;LLE-PLSR可以得到比PLSR方法更加准确的定量分析模型;MCUVE结合LLE-PLSR是一种有效的光谱定量分析方法。展开更多
文摘流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法,依然存在几点不足之处。因此,提出改进的MM-LLE算法,通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度,实验结果验证了改进算法的有效性。
文摘流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感.针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernel local linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别.该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性.实验结果表明该算法能有效的提高人脸识别的性能.
文摘变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(successive projections algorithm,SPA)以及两者结合的变量筛选策略用于NIRS冗余变量的剔除;偏最小二乘回归(partial least squares regression,PLSR)和LLE-PLSR用于复杂样品光谱定量模型的构建。结果表明:MCUVE方法既能有效的提取信息变量,同时可以提高模型的预测精度;LLE-PLSR可以得到比PLSR方法更加准确的定量分析模型;MCUVE结合LLE-PLSR是一种有效的光谱定量分析方法。