In this paper, all Lie bialgebra structures on the Lie algebras of generalized Witt type are considered. It is proved that, for any Lie algebra W of generalized Witt type, all Lie bialgebras on W are the coboundary tr...In this paper, all Lie bialgebra structures on the Lie algebras of generalized Witt type are considered. It is proved that, for any Lie algebra W of generalized Witt type, all Lie bialgebras on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first cohomology group H1(W, W(?)W) is trivial.展开更多
In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three qua...In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three quantizations by an isomorphism of sl2 (Cq) correspondingly. Moreover, two of these quantizations can be restricted to the extended affine Lie algebra sl2(Cq).展开更多
We quantize the W-algebra W(2,2), whose Verma modules, Harish-Chandra modules, irreducible weight modules and Lie bialgebra structures have been investigated and determined in a series of papers recently.
In this article, we use the general method of quantization by Drinfeld’s twist to quantize explicitly the Lie bialgebra structures on Lie algebras of Block type.
We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these ...We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.展开更多
In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2...In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.展开更多
Let M be an exact symplectic manifold with contact type boundary such that cl(M) = O. Motivated by noncommutative symplectic geometry and string topology, we show that the cyclic cohomology of the Fukaya category of...Let M be an exact symplectic manifold with contact type boundary such that cl(M) = O. Motivated by noncommutative symplectic geometry and string topology, we show that the cyclic cohomology of the Fukaya category of M has an involutive Lie bialgebra structure.展开更多
The multivariate linearly recursive sequences have a long history and an immense range of application. Perterson and Taft first investigated the algebraic structure of linearly recursive sequences over a field under H...The multivariate linearly recursive sequences have a long history and an immense range of application. Perterson and Taft first investigated the algebraic structure of linearly recursive sequences over a field under Hurwitz product from the Hopf algebra point of view and these results are developed in ref. [2]. The present author also展开更多
In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if H...In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.展开更多
文摘In this paper, all Lie bialgebra structures on the Lie algebras of generalized Witt type are considered. It is proved that, for any Lie algebra W of generalized Witt type, all Lie bialgebras on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first cohomology group H1(W, W(?)W) is trivial.
基金Supported by an NSF Grant 10471096 of China,"One Hundred Talents Program"from University of Science and Technology of China and"Trans-Century Training Programme Foundation for the Talents"from National Education Ministry of China
文摘In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
文摘In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three quantizations by an isomorphism of sl2 (Cq) correspondingly. Moreover, two of these quantizations can be restricted to the extended affine Lie algebra sl2(Cq).
基金Supported by NSF'of China (Grant Nos. 10825101, 10926166), Special Grade of the Financial Support from China Postdoctoral Science Foundation (Grant No. 201003326) and the Natural Science Research Project for Higher Institutions of Jiangsu Province (Grant No. 09KJB110001)
文摘We quantize the W-algebra W(2,2), whose Verma modules, Harish-Chandra modules, irreducible weight modules and Lie bialgebra structures have been investigated and determined in a series of papers recently.
基金supported by the National Science Foundation of China (10825101)"One Hundred Talents Program" from University of Science and Technology of Chinathe China Postdoctoral Science Foundation (20090450810)
文摘In this article, we use the general method of quantization by Drinfeld’s twist to quantize explicitly the Lie bialgebra structures on Lie algebras of Block type.
文摘We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.
基金Supported by NSF grant of China and NSF grant of Shandong Province(Grant Nos.11431010,11671056,ZR2013AL013 and ZR2014AL001)
文摘In the present paper, we investigate the dual Lie coalgebras of the centerless W(2,2) algebra by studying the maximal good subspaces. Based on this, we construct the dual Lie bialgebra structures of the centerless W(2,2) Lie bialgebra. As by-products, four new infinite dimensional Lie algebras are obtained.
基金The authors would like to thank the referees for pointing out several errors and hnprecisions and Professors Yiming Long, Yongbin Ruan and Gang Tian for their helpful communications and supports during these years. H. -L. Her was partially supported by the National Natural Science Foundation of China (Grant No. 10901084) S. Sun was partially supported by the National Natural Science Foundation of China (Grant Nos. 10731080, 11131004), PHR201106118, and the Institute of Mathematics and Interdisciplinary Science at Capital Normal University all authors are also partially supported by the National Natural Science Foundation of China (Grant No. 11271269).
文摘Let M be an exact symplectic manifold with contact type boundary such that cl(M) = O. Motivated by noncommutative symplectic geometry and string topology, we show that the cyclic cohomology of the Fukaya category of M has an involutive Lie bialgebra structure.
文摘The multivariate linearly recursive sequences have a long history and an immense range of application. Perterson and Taft first investigated the algebraic structure of linearly recursive sequences over a field under Hurwitz product from the Hopf algebra point of view and these results are developed in ref. [2]. The present author also
基金Supported by the Foundation of Shanghai Education Committee (06FZ029)NSF of China (10471091)"One Hundred Program" from University of Science and Technology of China
文摘In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.