This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and...This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and a related altitude motion model is established.Then,the designed controller is divided into the outer part and inner part,where the outer part is devised by a combination of the back-stepping method and command filter technique so that the’explosion of complexity’problem is eliminated.Moreover,the integrator structure of the altitude motion model is exploited to simplify the back-stepping design,and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances.The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied.The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances.It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once.Finally,comparative simulations are conducted to validate improved control performance of the proposed scheme.展开更多
This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengin...This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengine.Initially,the study establishes the compressor dynamic model with uncertainties,disturbances,and Close-Coupled Valve(CCV)actuator delay.Building upon this foundation,a Partially Observable Markov Decision Process(POMDP)is defined to facilitate active surge control.To address the issue of unobservability,a nonlinear state observer is designed using a finite-time high-order sliding mode.Furthermore,an Improved Soft Actor-Critic(ISAC)algorithm is developed,incorporating prioritized experience replay and adaptive temperature parameter techniques,to strike a balance between exploration and convergence during training.In addition,reasonable observation variables,error-segmented reward functions,and random initialization of model parameters are employed to enhance the robustness and generalization capability.Finally,to assess the effectiveness of the proposed method,numerical simulations are conducted,and it is compared with the fuzzy adaptive backstepping method and Second-Order Sliding Mode Control(SOSMC)method.The simulation results demonstrate that the deep reinforcement learning based controller outperforms other methods in both tracking accuracy and robustness.Consequently,the proposed active surge controller can effectively ensure stable operation of compressors in the high-pressure-ratio and high-efficiency region.展开更多
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n...In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.展开更多
In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical ...In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical form is derived to describe the univariate time series by introducing coordinate transformation. An observer-based deterministic learning technique is then adopted to achieve dynamical modeling of the associated transformed systems of the training univariate time series, and the modeling results in the form of radial basis function network (RBFN) models are stored in a pattern library. Subsequently, multiple observer-based dynamical estimators containing the RBFN models in the pattern library are constructed for a test univariate time series, and a recognition decision scheme is proposed by the derived recognition indicator. On this basis, more concise recognition conditions are provided, which is beneficial for verifying the recognition results. Finally, simulation studies on the Rossler system and aero-engine stall warning verify the effectiveness of the proposed approach.展开更多
针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,...针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,并将扩张状态观测器(extended state observer,ESO)与自学习滑模控制技术融为一体,实现SISO非仿射非线性系统的自学习滑模抗扰控制.该方法不依赖受控对象的数学模型,可以快速跟踪任意给定的参考信号.数值仿真试验表明了该方法响应速度快、控制精度高,具有很强的抗扰动能力,因而是一种鲁棒稳定性很强的控制方法,在SISO非仿射非线性系统控制领域具有重要作用.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61873295,61833016)the Aeronautical Science Foundation of China(No.2016ZA51011).
文摘This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and a related altitude motion model is established.Then,the designed controller is divided into the outer part and inner part,where the outer part is devised by a combination of the back-stepping method and command filter technique so that the’explosion of complexity’problem is eliminated.Moreover,the integrator structure of the altitude motion model is exploited to simplify the back-stepping design,and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances.The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied.The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances.It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once.Finally,comparative simulations are conducted to validate improved control performance of the proposed scheme.
基金co-supported by the National Natural Science Foundation of China(No.51976089)the Science Center for Gas Turbine Project,China(No.P2023-B-V-001-001)the China Scholarship Council(No.202306830092).
文摘This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengine.Initially,the study establishes the compressor dynamic model with uncertainties,disturbances,and Close-Coupled Valve(CCV)actuator delay.Building upon this foundation,a Partially Observable Markov Decision Process(POMDP)is defined to facilitate active surge control.To address the issue of unobservability,a nonlinear state observer is designed using a finite-time high-order sliding mode.Furthermore,an Improved Soft Actor-Critic(ISAC)algorithm is developed,incorporating prioritized experience replay and adaptive temperature parameter techniques,to strike a balance between exploration and convergence during training.In addition,reasonable observation variables,error-segmented reward functions,and random initialization of model parameters are employed to enhance the robustness and generalization capability.Finally,to assess the effectiveness of the proposed method,numerical simulations are conducted,and it is compared with the fuzzy adaptive backstepping method and Second-Order Sliding Mode Control(SOSMC)method.The simulation results demonstrate that the deep reinforcement learning based controller outperforms other methods in both tracking accuracy and robustness.Consequently,the proposed active surge controller can effectively ensure stable operation of compressors in the high-pressure-ratio and high-efficiency region.
基金supported in part by the National Natural Science Foundation of China (62222310, U1813201, 61973131, 62033008)the Research Fund for the Taishan Scholar Project of Shandong Province of China+2 种基金the NSFSD(ZR2022ZD34)Japan Society for the Promotion of Science (21K04129)Fujian Outstanding Youth Science Fund (2020J06022)。
文摘In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback.
基金supported by the National Postdoctoral Researcher Program of China(No.GZC20231451)the National Natural Science Foundation of China(Nos.61890922,62203263)the Shandong Province Natural Science Foundation(Nos.ZR2020ZD40,ZR2022QF062).
文摘In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical form is derived to describe the univariate time series by introducing coordinate transformation. An observer-based deterministic learning technique is then adopted to achieve dynamical modeling of the associated transformed systems of the training univariate time series, and the modeling results in the form of radial basis function network (RBFN) models are stored in a pattern library. Subsequently, multiple observer-based dynamical estimators containing the RBFN models in the pattern library are constructed for a test univariate time series, and a recognition decision scheme is proposed by the derived recognition indicator. On this basis, more concise recognition conditions are provided, which is beneficial for verifying the recognition results. Finally, simulation studies on the Rossler system and aero-engine stall warning verify the effectiveness of the proposed approach.
文摘针对一类单输入单输出(single-input single-output,SISO)非仿射非线性系统的控制问题,提出了一种自学习滑模抗扰控制方法.该方法用非线性光滑函数设计扩张状态观测器,实现SISO非仿射非线性系统内部不确定性和外部扰动的扩张状态估计,并将扩张状态观测器(extended state observer,ESO)与自学习滑模控制技术融为一体,实现SISO非仿射非线性系统的自学习滑模抗扰控制.该方法不依赖受控对象的数学模型,可以快速跟踪任意给定的参考信号.数值仿真试验表明了该方法响应速度快、控制精度高,具有很强的抗扰动能力,因而是一种鲁棒稳定性很强的控制方法,在SISO非仿射非线性系统控制领域具有重要作用.