In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation err...In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation errors of the follower UAVs have been transformed into the Frenet-Serret frame.Formation control laws satisfying five motion constraints(i.e.,linear velocity,linear acceleration,heading rate,climb rate and climb angle)have been designed.The convergence of the control laws has been discussed via the Lyapunov stability tool.In addition,to address the unknown disturbances,an adaptive disturbance observer is exploited.Furthermore,formation control laws involving estimated disturbances are presented as well.The collision avoidance between UAVs is achieved with the artificial potential method.Simulation results obtained using four scenarios verify the effectiveness of the proposed method in situations with constant disturbances and varying disturbances,as well as without disturbances.展开更多
In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)m...In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.61803353 and U19B2029)the China Postdoctoral Science Foundation(No.2017M620858)。
文摘In this paper,the 3D leader–follower formation control problem,which focuses on swarms of fixed-wing Unmanned Aerial Vehicles(UAVs)with motion constraints and disturbances,has been investigated.Original formation errors of the follower UAVs have been transformed into the Frenet-Serret frame.Formation control laws satisfying five motion constraints(i.e.,linear velocity,linear acceleration,heading rate,climb rate and climb angle)have been designed.The convergence of the control laws has been discussed via the Lyapunov stability tool.In addition,to address the unknown disturbances,an adaptive disturbance observer is exploited.Furthermore,formation control laws involving estimated disturbances are presented as well.The collision avoidance between UAVs is achieved with the artificial potential method.Simulation results obtained using four scenarios verify the effectiveness of the proposed method in situations with constant disturbances and varying disturbances,as well as without disturbances.
基金supported in part by the Foundation(No.2019-JCJQ-ZD-049)the National Natural Science Foundation of China(Nos.61703134,62022060,62073234,61773278)+2 种基金The China Postdoctoral Science Foundation(No.2019M650874)The Key R&D Program of Hebei Province(No.20310802D)the Natural Science Foundation of Hebei Province(Nos.F2019202369,F2018202279,F2019202363)。
文摘In this paper,periodic event-triggered formation control problems with collision avoidance are studied for leader–follower multiple Unmanned Aerial Vehicles(UAVs).Firstly,based on the Artificial Potential Field(APF)method,a novel sliding manifold is proposed for controller design,which can solve the problem of collision avoidance.Then,the event-triggered strategy is applied to the distributed formation control of multi-UAV systems,where the evaluation of the event condition is continuous.In addition,the exclusion of Zeno behavior can be guaranteed by the inter-event time between two successive trigger events have a positive lower bound.Next,a periodic event-triggered mechanism is developed for formation control based on the continuous eventtriggered mechanism.The periodic trigger mechanism does not need additional hardware circuits and sophisticated sensors,which can reduce the control cost.The stability of the control system is proved by the Lyapunov function method.Finally,some numerical simulations are presented to illustrate the effectiveness of the proposed control protocol.