Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, fo...Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.展开更多
Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1...Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.展开更多
Ⅰ. INTRODUCTIONLet X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, …be i. i. d. random variables each having distribution function F(x), and X<sub>n</sub>, 1≤…≤X<...Ⅰ. INTRODUCTIONLet X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, …be i. i. d. random variables each having distribution function F(x), and X<sub>n</sub>, 1≤…≤X<sub>n,n</sub> the order statistics of X<sub>1</sub>, …, X<sub>n</sub>. Suppose that there exist constants α<sub>&</sub>gt;O and β<sub>n</sub>∈R and some r∈R such展开更多
Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞...Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.展开更多
Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing d...Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established.展开更多
In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑...In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.展开更多
In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-...Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.展开更多
基金supported by National Natural Science Foundation of China (No.10771192 70871103)
文摘Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.
基金Research supported by National Nature Science Foundation of China:10471126
文摘Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.
基金Project supported by the National Natural Science Foundation of China.
文摘Ⅰ. INTRODUCTIONLet X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, …be i. i. d. random variables each having distribution function F(x), and X<sub>n</sub>, 1≤…≤X<sub>n,n</sub> the order statistics of X<sub>1</sub>, …, X<sub>n</sub>. Suppose that there exist constants α<sub>&</sub>gt;O and β<sub>n</sub>∈R and some r∈R such
基金Research supported by the National Natural Science Foundation of China (1 0 0 71 0 72 )
文摘Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.
基金Project Supported by NSFC (10131040)SRFDP (2002335090)
文摘A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
文摘Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established.
文摘In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.
文摘In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
基金supported by NSFC(10071072) supported by SRFDP(200235090)+1 种基金support by the BK21 Project of the Department of Mathematics,Yonsei Universitythe Interdisciplinary Research Program of KOSEF 1999-2-103-001-5 and com2MaC in POSTECH
文摘Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.