In this paper, we deal with some corresponding relations between knots and polynomials by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and deriva...In this paper, we deal with some corresponding relations between knots and polynomials by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and derivative of knot polynomials). We give necessary and sufficient conditions that a Laurent polynomial with integer coefficients, whose breadth is less than five, is the Jones polynomial of a certain knot.展开更多
In this paper, we propose and analyze a tensor product subdivision scheme which is the extension of three point scheme for curve modeling. The usefulness of the scheme is illustrated by considering different examples ...In this paper, we propose and analyze a tensor product subdivision scheme which is the extension of three point scheme for curve modeling. The usefulness of the scheme is illustrated by considering different examples along with its application in surface modeling.展开更多
In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivisio...In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivision curve C0 to C3 continuity and convergence of the scheme for generating tensor product surfaces for certain ranges of parameters by using Laurent polynomial method are discussed. The systems of curve and surface design based on our scheme have been developed successfully in garment CAD especially for clothes modelling.展开更多
In this paper, we study the factorization of bi-orthogonal Laurent polynomial wavelet matrices with degree one into simple blocks. A conjecture about advanced factorization is given.
We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficien...We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficient conditions of the continuities from C0 to C5 of 3- and 5-point schemes are discussed. Our family of 3-point and 5-point ternary schemes has higher order of derivative continuity than the family of 3-point and 5-point schemes presented by [Jian-ao Lian, On a-ary subdivision for curve design: II. 3-point and 5-point interpolatory schemes, Applications and Applied Mathematics: An International Journal, 3(2), 2008, 176-187]. Moreover, a 3-point ternary cubic B-spline is special case of our family of 3-point ternary scheme. The visual quality of schemes with examples is also demonstrated.展开更多
In this paper, a Ritt-Wu characteristic set method for Laurent partial differential polynomial systems is presented. The concept of Laurent regular differential chain is de?ned and its basic properties are proved. The...In this paper, a Ritt-Wu characteristic set method for Laurent partial differential polynomial systems is presented. The concept of Laurent regular differential chain is de?ned and its basic properties are proved. The authors give a partial method to decide whether a Laurent differential chain A is Laurent regular. The decision for whether A is Laurent regular is reduced to the decision of whether a univariate differential chain A1 is Laurent regular. For a univariate differential chain A1,the authors ?rst give a criterion for whether A1 is Laurent regular in terms of its generic zeros and then give partial results on deciding whether A1 is Laurent regular.展开更多
In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefu...In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefulness of the scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. Moreover, B-splines of degree 4and well known 3-point schemes [1, 2, 3, 4, 6, 11, 12, 14, 15] are special cases of our proposed scheme.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10771023)the Liaoning Educational Committee (Grant No.2009A418)
文摘In this paper, we deal with some corresponding relations between knots and polynomials by using the basic properties of knot polynomials (such as, some special values of knot polynomials, the Arf invariant and derivative of knot polynomials). We give necessary and sufficient conditions that a Laurent polynomial with integer coefficients, whose breadth is less than five, is the Jones polynomial of a certain knot.
文摘In this paper, we propose and analyze a tensor product subdivision scheme which is the extension of three point scheme for curve modeling. The usefulness of the scheme is illustrated by considering different examples along with its application in surface modeling.
基金Supported by the Indigenous PhD Scholarship Scheme of Higher Education Commission (HEC) Pakistan
文摘In this paper, we propose a three point approximating subdivision scheme, with three shape parameters, that unifies three different existing three point approximating schemes. Some sufficient conditions for subdivision curve C0 to C3 continuity and convergence of the scheme for generating tensor product surfaces for certain ranges of parameters by using Laurent polynomial method are discussed. The systems of curve and surface design based on our scheme have been developed successfully in garment CAD especially for clothes modelling.
基金The work was partially supported by NSFC # 69735052
文摘In this paper, we study the factorization of bi-orthogonal Laurent polynomial wavelet matrices with degree one into simple blocks. A conjecture about advanced factorization is given.
文摘We present a general formula to generate the family of odd-point ternary approximating subdivision schemes with a shape parameter for describing curves. The influence of parameter to the limit curves and the sufficient conditions of the continuities from C0 to C5 of 3- and 5-point schemes are discussed. Our family of 3-point and 5-point ternary schemes has higher order of derivative continuity than the family of 3-point and 5-point schemes presented by [Jian-ao Lian, On a-ary subdivision for curve design: II. 3-point and 5-point interpolatory schemes, Applications and Applied Mathematics: An International Journal, 3(2), 2008, 176-187]. Moreover, a 3-point ternary cubic B-spline is special case of our family of 3-point ternary scheme. The visual quality of schemes with examples is also demonstrated.
基金supported by NKRDPC under Grant No.2018YFA0306702the National Natural Science Foundation of China under Grant No.11688101
文摘In this paper, a Ritt-Wu characteristic set method for Laurent partial differential polynomial systems is presented. The concept of Laurent regular differential chain is de?ned and its basic properties are proved. The authors give a partial method to decide whether a Laurent differential chain A is Laurent regular. The decision for whether A is Laurent regular is reduced to the decision of whether a univariate differential chain A1 is Laurent regular. For a univariate differential chain A1,the authors ?rst give a criterion for whether A1 is Laurent regular in terms of its generic zeros and then give partial results on deciding whether A1 is Laurent regular.
文摘In this paper, we propose and analyze a subdivision scheme which unifies 3-point approximating subdivision schemes of any arity in its compact form and has less support, computational cost and error bounds.? The usefulness of the scheme is illustrated by considering different examples along with its comparison with the established subdivision schemes. Moreover, B-splines of degree 4and well known 3-point schemes [1, 2, 3, 4, 6, 11, 12, 14, 15] are special cases of our proposed scheme.