Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone ...Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practicall importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N)of Yanjiang region, Changshu (120.46°E, 31.41°N)of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 201:3 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha-1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe matudty and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative展开更多
基金financed by the Special Program of Super Rice of Ministry of Agriculture, China (02318802013231)the National Public Services Sectors (Agricultural) Research Projects, China (201303102)+1 种基金the Major Scientific and Technological Projects, Bureau of Science and Technology of Ningbo, China (2013C11001)the Innovative Training Program of Yangzhou University, China (KYLX15_1371)
文摘Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practicall importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N)of Yanjiang region, Changshu (120.46°E, 31.41°N)of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 201:3 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha-1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe matudty and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative