Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o...Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.展开更多
研究东疆暴雪天气的成因,提高同类灾害性天气的预报水平,为东疆暴雪天气的预报提供参考。采用区域气象自动站观测资料和NCEP/NCAR再分析资料对2016年5月20—21日哈密北部军马场的暴雪天气进行诊断分析。结果表明:暴雪是在极锋急流带明...研究东疆暴雪天气的成因,提高同类灾害性天气的预报水平,为东疆暴雪天气的预报提供参考。采用区域气象自动站观测资料和NCEP/NCAR再分析资料对2016年5月20—21日哈密北部军马场的暴雪天气进行诊断分析。结果表明:暴雪是在极锋急流带明显南伸的背景下,新疆北部低涡和地面冷锋影响下形成的。550~750 h Pa之间强烈的上升运动为暴雪提供动力条件,600 h Pa以下持续的水汽通量散度为暴雪提供水汽,前期的暖平流为降水的出现提供了热力条件,而后的强冷平流使气温下降,从而导致降雪的出现。中低层锋生锋消的垂直配置与降水的持续时间有较好的对应关系。极锋急流带明显南伸对暴雪的产生提供有利的环流背景。展开更多
基金supported by the National Key Research and Development Program of China (2017YFD0300408)the Major Research Projects of Anhui (202003b06020021)the Graduate Innovation Fund of Anhui Agricultural University (2020 ysj-5)。
文摘Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.
文摘研究东疆暴雪天气的成因,提高同类灾害性天气的预报水平,为东疆暴雪天气的预报提供参考。采用区域气象自动站观测资料和NCEP/NCAR再分析资料对2016年5月20—21日哈密北部军马场的暴雪天气进行诊断分析。结果表明:暴雪是在极锋急流带明显南伸的背景下,新疆北部低涡和地面冷锋影响下形成的。550~750 h Pa之间强烈的上升运动为暴雪提供动力条件,600 h Pa以下持续的水汽通量散度为暴雪提供水汽,前期的暖平流为降水的出现提供了热力条件,而后的强冷平流使气温下降,从而导致降雪的出现。中低层锋生锋消的垂直配置与降水的持续时间有较好的对应关系。极锋急流带明显南伸对暴雪的产生提供有利的环流背景。