An approximate formula of space charge field of orotron in rectangular coordinate system,when one of the boundaries is infinite, is derived. Using this model the self-consistant large signal interactionof orotron with...An approximate formula of space charge field of orotron in rectangular coordinate system,when one of the boundaries is infinite, is derived. Using this model the self-consistant large signal interactionof orotron with space charge is calculated, and the effect of this charge on the performance of the device isdiscussed.展开更多
In this paper, we study the planar gyrotron theoretically and numerically. Applying the large-signal theory to the planar gyrotron, the wave equation of electric field and the equation of motion of an electron are sim...In this paper, we study the planar gyrotron theoretically and numerically. Applying the large-signal theory to the planar gyrotron, the wave equation of electric field and the equation of motion of an electron are simultaneously solved to obtain some characteristic parameters, such as the phase-space plot of electrons, working frequency, startup time, electronic efficiency, and output power of the device. To verify the formulations used in this paper, three-dimensional particle simula- tions are performed on the same device, and the numerical results accord well with those obtained by using the large-signal theory. Theoretical and numerical results show that the electronic efficiency can reach 21% for the prototype of the planar gyrotron working at the frequency of 0.81 THz.展开更多
基金This project is supported by the Natural Science Fundation of China
文摘An approximate formula of space charge field of orotron in rectangular coordinate system,when one of the boundaries is infinite, is derived. Using this model the self-consistant large signal interactionof orotron with space charge is calculated, and the effect of this charge on the performance of the device isdiscussed.
文摘In this paper, we study the planar gyrotron theoretically and numerically. Applying the large-signal theory to the planar gyrotron, the wave equation of electric field and the equation of motion of an electron are simultaneously solved to obtain some characteristic parameters, such as the phase-space plot of electrons, working frequency, startup time, electronic efficiency, and output power of the device. To verify the formulations used in this paper, three-dimensional particle simula- tions are performed on the same device, and the numerical results accord well with those obtained by using the large-signal theory. Theoretical and numerical results show that the electronic efficiency can reach 21% for the prototype of the planar gyrotron working at the frequency of 0.81 THz.