In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficien...In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficient and the cavity volume show a distinctly quasi-periodic process with cavitation shedding and the results agree fairly well with the available experimental data. The present simulation accurately captures the main features of the unsteady cavitation transient behavior including the attached cavity growth, the sheet/cloud cavitation transition and the cloud cavitation collapse. The vortex shedding structure from a hydrofoil cavitating wake is identified by the Q- criterion, which implies that the large scale structures might slide and roll down along the suction side of the hydrofoil while being further developed at the downstream. Further analysis demonstrates that the turbulence level of the flow is clearly related to the cavitation and the turbulence velocity fluctuation is much influenced by the cavity shedding.展开更多
Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model wa...Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term. The predicted 3-D cavitation evolutions, including the cavity growth, break-off and collapse downstream, and the shedding cycle as well as its frequency agree fairly well with experimental results. The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching, volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane. The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness. In non-cavitation conditions, the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge. With decreasing cavitation number, the present case has O" = 1.07, and the attached sheet cavitation beco- mes highly unsteady, with periodic growth and break-off to form the cavitation cloud. The expansion due to cavitation induces boun- dary layer separation and significantly increases the vorticity magnitude at the cavity interface. A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation. Examination of the flow field shows that the vortex dilatation and baroclinic torque terms in- crease in the cavitating case to the same magnitude as the vortex stretching term, while for the non-cavitating case these two terms are zero.展开更多
The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and ...The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and 3.5 were investigated using the Large Eddy Simulation (LES). The full field vorticity and velocity distributions as well as turbulent quantities were calculated in detail and the near wake structures were presented. The results show that the bi-stable flow nature was observed at L/D = 1.5 and distinct vortex shedding of the upstream cylinders occurred at L/D = 3.5 at Re = 1.5 × 10^4. The techniques of Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV) are also employed to validate the present LES method. The results show that the numerical predictions are in excellent agreement with the experimental measurements. Therefore, the full field instantaneous and mean quantities of the flow field, velocity field and vorticity field can be extracted from the LES results for further study of the complex flow characteristics.展开更多
The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LE...The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LES). The objective of the present study is to explore the differences of the flow mechanisms between the finite and infinite circular cylinders. It is shown that the free end of the finite circular cylinders affects the wake region significantly. The mean drag coefficient and the fluctuating lift coefficient of the finite circular cylinder are smaller than those of the infinite circular cylinder. The three-dimensional separation and the separated shear layer instability of the finite circular cylinder can obviously be observed. The existence of an arch vortex in the average flow downstream of the free end is demonstrated.展开更多
A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re = 3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow struc...A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re = 3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow structures were presented and compared with those for a circular cylinder at the same Reynolds number. The mean drag coefficient for the wavy cylinder is smaller than that for a corresponding circular cylinder due to the formation of a longer wake vortex generated by the wavy cylinder. The fluctuating lift coefficient of the wavy cylinder is also greatly reduced. This kind of wavy surface leads to the formation of 3-D free shear layers which are more stable than purely 2-D free shear layers. Such free shear layers only roll up into mature vortices at further downstream position and significantly modify the near wake structures and the pressure distributions around the wavy cylinder. Moreover, the simulations in laminar flow condition were also performed to investigate the effect of Reynolds number on force reduction control.展开更多
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51576143,11472197)
文摘In this paper, the turbulent attached cavitating flow around a Clark-Y hydrofoil is investigated by the large eddy simula- tion (LES) method coupled with a homogeneous cavitation model. The predicted lift coefficient and the cavity volume show a distinctly quasi-periodic process with cavitation shedding and the results agree fairly well with the available experimental data. The present simulation accurately captures the main features of the unsteady cavitation transient behavior including the attached cavity growth, the sheet/cloud cavitation transition and the cloud cavitation collapse. The vortex shedding structure from a hydrofoil cavitating wake is identified by the Q- criterion, which implies that the large scale structures might slide and roll down along the suction side of the hydrofoil while being further developed at the downstream. Further analysis demonstrates that the turbulence level of the flow is clearly related to the cavitation and the turbulence velocity fluctuation is much influenced by the cavity shedding.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51206087, 51179091)the Major National Scientific Instrument and Equipment Development Project (Grant No. 2011YQ07004901)the China Postdoctoral Science Foundation (Grant Nos. 2011M500314,2012T50090)
文摘Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavita- ting flows around a twisted hydrofoil. The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term. The predicted 3-D cavitation evolutions, including the cavity growth, break-off and collapse downstream, and the shedding cycle as well as its frequency agree fairly well with experimental results. The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching, volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane. The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness. In non-cavitation conditions, the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge. With decreasing cavitation number, the present case has O" = 1.07, and the attached sheet cavitation beco- mes highly unsteady, with periodic growth and break-off to form the cavitation cloud. The expansion due to cavitation induces boun- dary layer separation and significantly increases the vorticity magnitude at the cavity interface. A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation. Examination of the flow field shows that the vortex dilatation and baroclinic torque terms in- crease in the cavitating case to the same magnitude as the vortex stretching term, while for the non-cavitating case these two terms are zero.
基金the Council of the Hong Kong Special Administrative Region, China (Grant No. PolyU5299/03E)the Research Program of the Wuhan University of Technology, China(Grant No. 471-38650324)
文摘The complex three-dimensional turbulent flows around a cylinder array with four cylinders in an in-line square configuration at a subcritical Reynolds number of 1.5 × 10^4 with the spacing ratio at L/D = 1.5 and 3.5 were investigated using the Large Eddy Simulation (LES). The full field vorticity and velocity distributions as well as turbulent quantities were calculated in detail and the near wake structures were presented. The results show that the bi-stable flow nature was observed at L/D = 1.5 and distinct vortex shedding of the upstream cylinders occurred at L/D = 3.5 at Re = 1.5 × 10^4. The techniques of Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV) are also employed to validate the present LES method. The results show that the numerical predictions are in excellent agreement with the experimental measurements. Therefore, the full field instantaneous and mean quantities of the flow field, velocity field and vorticity field can be extracted from the LES results for further study of the complex flow characteristics.
基金Project supported by the National Natural Science Foundation of China(Grant No.40906049)
文摘The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LES). The objective of the present study is to explore the differences of the flow mechanisms between the finite and infinite circular cylinders. It is shown that the free end of the finite circular cylinders affects the wake region significantly. The mean drag coefficient and the fluctuating lift coefficient of the finite circular cylinder are smaller than those of the infinite circular cylinder. The three-dimensional separation and the separated shear layer instability of the finite circular cylinder can obviously be observed. The existence of an arch vortex in the average flow downstream of the free end is demonstrated.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200804971025)the Council of the Hong Kong Special Administrative Region, China (Grant No. PolyU 5311/04E)
文摘A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re = 3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow structures were presented and compared with those for a circular cylinder at the same Reynolds number. The mean drag coefficient for the wavy cylinder is smaller than that for a corresponding circular cylinder due to the formation of a longer wake vortex generated by the wavy cylinder. The fluctuating lift coefficient of the wavy cylinder is also greatly reduced. This kind of wavy surface leads to the formation of 3-D free shear layers which are more stable than purely 2-D free shear layers. Such free shear layers only roll up into mature vortices at further downstream position and significantly modify the near wake structures and the pressure distributions around the wavy cylinder. Moreover, the simulations in laminar flow condition were also performed to investigate the effect of Reynolds number on force reduction control.