In the Langshan region, northwestern China, marked multi-stage intraplate deformation events have occurred since the Mesozoic, including(1) northeast-striking ductile left-lateral strike slip during the Middle-Late ...In the Langshan region, northwestern China, marked multi-stage intraplate deformation events have occurred since the Mesozoic, including(1) northeast-striking ductile left-lateral strike slip during the Middle-Late Triassic, which is closely related to the collision between the North China and the Yangtze plates;(2) top-to-the-southeast thrust with northwest-southeast trending maximum compression during the Late Jurassic;(3) nearly eastward detachment during the Early Cretaceous;(4) top-to-the-northwest thrust with northwest-southeast trending maximum compression during the Late Cretaceous and Early Cenozoic;(5) northeast-striking brittle left-lateral strike slip with nearly north-south trending maximum compression; and(6) northwest-southeast extension during the Middle-Late Cenozoic. All these deformation events belong to the intraplate deformation across the entire Central Asian region and respond to the tectonic events along the plate boundaries or deep tectonics. The structures developed in early events in the crust were the most important factors controlling the later deformation styles, and few new structures have later developed. Based on previous research and our results, the paleostress inversion in the Langshan region shows that the Mesozoic intraplate deformations in the study region mainly resulted from the tectonic events from the Paleo-Pacific region and have no or a weak relation to the Tethys region. During the Late Jurassic, the maximum compression from the Mongolia-Okhotsk region cannot be excluded. The Langshan region is the bridge between southern Mongolia and the western Ordos tectonic belt and is thus important to understand the nature and relationship between both regions.展开更多
旅游形象感知、塑造和传播是国内外旅游研究热点,研究方法上以问卷调查为主。世界遗产地是我国重要旅游地类型,但其游客感知形象研究较少。本研究针对国内世界遗产地旅游形象研究内容和研究方法的不足,在崀山的地方性、旅游形象替代分...旅游形象感知、塑造和传播是国内外旅游研究热点,研究方法上以问卷调查为主。世界遗产地是我国重要旅游地类型,但其游客感知形象研究较少。本研究针对国内世界遗产地旅游形象研究内容和研究方法的不足,在崀山的地方性、旅游形象替代分析基础上,采用ROST Word parser软件分析崀山网络游记及游客点评,归纳出游客所感知的崀山认知形象、情感形象和总体形象及其信息渠道;对崀山旅游形象进行重塑,突出"天人合一的和谐大美"核心理念(MI)和"世界丹霞奇葩·山水田园人家"的总体形象及其分体旅游形象及视觉符号识别系统(VI)、听觉形象(AI)、行为识别(BI);最后基于传播策略的基本原则,提出目的地整合营销传播模式、语言和非语言传播符号系统、传播受众、媒体和非媒体传播方式、时空传播策略。展开更多
Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basi...Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomor- phological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally ex- tended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.展开更多
In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained...In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained. This article comprehensively analyzes the research achievements over the past 40 years of geology, geomorphology, seismic exploration, paleogeography, and oil and gas exploration in the Ordos Basin and Langshan. It recognizes that the northern part of the Ordos Basin experienced a meteorite impact in the Late Cretaceous period. The impact pushed the block northwest ward, subducting after colliding with igneous rocks in the north. This sudden event formed a clear arc-shaped mountain zone in the north and a wedge-shaped trench in front of the mountain. The chaotic layers, prolonged and continuous faults, and numerous thrust layers in the Langshan, a negative anomaly area in the center of the northern Ordos, abnormal orientation of crystalline basement structures in the north of Ordos, Moho uplift, and distribution of meteorite fragments in the northwest of Langshan, all of these geological phenomena support the occurrence of the meteorite impact event, forming the arc-shaped Langshan and the Trench.展开更多
The apatite fission track dating of samples from the Dabashan (i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this stu...The apatite fission track dating of samples from the Dabashan (i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous (-90-70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene (-50-45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic (since -10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone (PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous (-70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.展开更多
This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yield...This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred betw展开更多
基金funded by the National Science Foundation of China (Nos. 41172198, 40702032)China Geological Survey Project (Nos. 12120113096400, 1212011121064)
文摘In the Langshan region, northwestern China, marked multi-stage intraplate deformation events have occurred since the Mesozoic, including(1) northeast-striking ductile left-lateral strike slip during the Middle-Late Triassic, which is closely related to the collision between the North China and the Yangtze plates;(2) top-to-the-southeast thrust with northwest-southeast trending maximum compression during the Late Jurassic;(3) nearly eastward detachment during the Early Cretaceous;(4) top-to-the-northwest thrust with northwest-southeast trending maximum compression during the Late Cretaceous and Early Cenozoic;(5) northeast-striking brittle left-lateral strike slip with nearly north-south trending maximum compression; and(6) northwest-southeast extension during the Middle-Late Cenozoic. All these deformation events belong to the intraplate deformation across the entire Central Asian region and respond to the tectonic events along the plate boundaries or deep tectonics. The structures developed in early events in the crust were the most important factors controlling the later deformation styles, and few new structures have later developed. Based on previous research and our results, the paleostress inversion in the Langshan region shows that the Mesozoic intraplate deformations in the study region mainly resulted from the tectonic events from the Paleo-Pacific region and have no or a weak relation to the Tethys region. During the Late Jurassic, the maximum compression from the Mongolia-Okhotsk region cannot be excluded. The Langshan region is the bridge between southern Mongolia and the western Ordos tectonic belt and is thus important to understand the nature and relationship between both regions.
文摘旅游形象感知、塑造和传播是国内外旅游研究热点,研究方法上以问卷调查为主。世界遗产地是我国重要旅游地类型,但其游客感知形象研究较少。本研究针对国内世界遗产地旅游形象研究内容和研究方法的不足,在崀山的地方性、旅游形象替代分析基础上,采用ROST Word parser软件分析崀山网络游记及游客点评,归纳出游客所感知的崀山认知形象、情感形象和总体形象及其信息渠道;对崀山旅游形象进行重塑,突出"天人合一的和谐大美"核心理念(MI)和"世界丹霞奇葩·山水田园人家"的总体形象及其分体旅游形象及视觉符号识别系统(VI)、听觉形象(AI)、行为识别(BI);最后基于传播策略的基本原则,提出目的地整合营销传播模式、语言和非语言传播符号系统、传播受众、媒体和非媒体传播方式、时空传播策略。
基金funded jointly by the National Natural Science Foundation of China (Nos. 41402187, 41372220, 41590861, 41661134011)
文摘Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range- front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomor- phological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally ex- tended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.
文摘In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained. This article comprehensively analyzes the research achievements over the past 40 years of geology, geomorphology, seismic exploration, paleogeography, and oil and gas exploration in the Ordos Basin and Langshan. It recognizes that the northern part of the Ordos Basin experienced a meteorite impact in the Late Cretaceous period. The impact pushed the block northwest ward, subducting after colliding with igneous rocks in the north. This sudden event formed a clear arc-shaped mountain zone in the north and a wedge-shaped trench in front of the mountain. The chaotic layers, prolonged and continuous faults, and numerous thrust layers in the Langshan, a negative anomaly area in the center of the northern Ordos, abnormal orientation of crystalline basement structures in the north of Ordos, Moho uplift, and distribution of meteorite fragments in the northwest of Langshan, all of these geological phenomena support the occurrence of the meteorite impact event, forming the arc-shaped Langshan and the Trench.
基金funded by Natural Science Foundation of China(41572190)National Basic Research Program of Ministry of Science and Technology of the People's Republic of China(2015CB453002)China Geological Survey(121201102000150009-16,12120115069601)
文摘The apatite fission track dating of samples from the Dabashan (i.e., the Langshan in the northeastern Alxa Block) by the laser ablation method and their thermal history modeling of AFT ages are conducted in this study. The obtained results and lines of geological evidence in the study region indicate that the Langshan has experienced complicated tectonic-thermal events during the the Late Cretaceous-Cenozoic. Firstly, it experienced a tectonic-thermal event in the Late Cretaceous (-90-70 Ma). The event had little relation with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, but was related to the Neo-Tethys subduction and compression between the Lhasa Block and Qiangtang Block. Secondly, it underwent the dextral slip faulting in the Eocene (-50-45 Ma). The strike slip fault may develop in the same tectonic setting as sinistral slip faults in southern Mongolia and thrusts in West Qinling to the southwest Ordos Block in the same period, which is the remote far-field response to the India-Eurasia collision. Thirdly, the tectonic thermal event existed in the late Cenozoic (since -10 Ma), thermal modeling shows that several samples began their denudation from upper region of partial annealing zone (PAZ), and the denudation may have a great relationship with the growth of Qinghai-Tibetan Plateau to the northeast. In addition, the AFT ages of Langshan indicate that the main body of the Langshan may be an upper part of fossil PAZ of the Late Cretaceous (-70 Ma). The fossil PAZ were destroyed and deformed by tectonic events repeatedly in the Cenozoic along with the denudation.
基金supported by the National Natural Science Foundation of China (Grant No. 41473015)a research grant from the Institute of Crustal Dynamics, CEA (ZDJ2014-02+2 种基金 ZDJ2017-05)the Tutor Foundation of the China University of Geosciences (Beijing) (Grant No. 53200859400)the China Geological Survey Projects (Grant Nos. 12120114041401 and 12120113015700)
文摘This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred betw